ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of Long-Lived Slepton NLSP in GMSB model at Linear Collider

114   0   0.0 ( 0 )
 نشر من قبل Jose Kenichi Mizukoshi
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We performed an analysis on the detection of a long-lived slepton at a linear collider with $sqrt{s}=500$ GeV. In GMSB models a long-lived NLSP is predicted for large value of the supersymmetry breaking scale $sqrt{F}$. Furthermore in a large portion of the parameter space this particle is a stau. Such heavy charged particles will leave a track in the tracking volume and hit the muonic detector. In order to disentangle this signal from the muon background, we explore kinematics and particle identification tools: time of flight device, dE/dX and Cerenkov devices. We show that a linear collider will be able to detect long-lived staus with masses up to the kinematical limit of the machine. We also present our estimation of the sensitivity to the stau lifetime.

قيم البحث

اقرأ أيضاً

174 - S. Ambrosanio 2000
We report a study on the measurement of the SUSY breaking scale sqrt(F) in the framework of gauge-mediated supersymmetry breaking (GMSB) models at the LHC. The work is focused on the GMSB scenario where a stau is the next-to-lightest SUSY particle (N LSP) and decays into a gravitino with lifetime c*tau_NLSP in the range 0.5 m to 1 km. We study the identification of long-lived sleptons using the momentum and time of flight measurements in the muon chambers of the ATLAS experiment. A realistic evaluation of the statistical and systematic uncertainties on the measurement of the slepton mass and lifetime is performed, based on a detailed simulation of the detector response. Accessible range and precision on sqrt(F) achievable with a counting method are assessed. Many features of our analysis can be extended to the study of different theoretical frameworks with similar signatures at the LHC.
106 - Sandro Ambrosanio 1999
Assuming gauge-mediated supersymmetry breaking, we simulate precision measurements of fundamental parameters at a 500 GeV e+e- linear collider in the scenario where a neutralino is the next-to-lightest supersymmetric particle. Information on the supe rsymmetry breaking and the messenger sectors of the theory is extracted from realistic fits to the measured mass spectrum of the Minimal Supersymmetric Model particles and the next-to-lightest supersymmetric particle lifetime.
When the mass difference between the lightest slepton and the lightest neutralino is smaller than the tau mass, the lifetime of the lightest slepton in the constrained Minimal Supersymmetric Standard Model (MSSM) increases in many orders of magnitude with respect to typical lifetimes of other supersymmetric particles. In a general MSSM, the lifetime of the lightest slepton is inversely proportional to the square of the intergenerational mixing in the slepton mass matrices. Such a long-lived slepton would produce a distinctive signature at LHC and a measurement of its lifetime would be relatively simple. Therefore, the long-lived slepton scenario offers an excellent opportunity to study lepton flavour violation at ATLAS and CMS detectors in the LHC and an improvement of the leptonic mass insertion bounds by more than five orders of magnitude would be possible.
159 - Juliette Alimena 2019
Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can deca y far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments --- as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER --- to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the High-Luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity dark showers, highlighting opportunities for expanding the LHC reach for these signals.
In this paper, we point out a novel signature of physics beyond the Standard Model which could potentially be observed both at the Large Hadron Collider (LHC) and at future colliders. This signature, which emerges naturally within many proposed exten sions of the Standard Model, results from the multiple displaced vertices associated with the successive decays of unstable, long-lived particles along the same decay chain. We call such a sequence of displaced vertices a tumbler. We examine the prospects for observing tumblers at the LHC and assess the extent to which tumbler signatures can be distinguished from other signatures of new physics which also involve multiple displaced vertices within the same collider event. As part of this analysis, we also develop a procedure for reconstructing the masses and lifetimes of the particles involved in the corresponding decay chains. We find that the prospects for discovering and distinguishing tumblers can be greatly enhanced by exploiting precision timing information such as would be provided by the CMS timing layer at the high-luminosity LHC. Our analysis therefore provides strong additional motivation for continued efforts to improve the timing capabilities of collider detectors at the LHC and beyond.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا