ﻻ يوجد ملخص باللغة العربية
We suggest a simple physical picture for the diffractive parton distributions that appear in diffractive deeply inelastic scattering. In this picture, partons impinging on the proton can have any transverse separation, but only when the separation is small can they penetrate the proton without breaking it up. By comparing the predictions from this picture with the diffractive data from HERA, we determine rough values for the small separations that dominate the diffraction process.
We study the use of deep learning techniques to reconstruct the kinematics of the deep inelastic scattering (DIS) process in electron-proton collisions. In particular, we use simulated data from the ZEUS experiment at the HERA accelerator facility, a
Ongoing experiments at JLAB investigate the nuclear transparency in exclusive rho0(770) electroproduction off nuclei. In this work we present transport model predictions for the attenuation of rho0s in nuclei and for color transparency (CT) effects a
The impact of nonlinear effects in the diffractive observables that will be measured in future electron-ion collisions is investigated. We present, for the first time, the predictions for the diffractive structure function and reduced cross sections
Effective field theories have often been applied to systems with deeply inelastic reactions that produce particles with large momenta outside the domain of validity of the effective theory. The effects of the deeply inelastic reactions have been take
New parameter free calculations including a variety of necessary kinematic and dynamic effects show that the results of BNL $(p,2p)$ measurements are consistent with the expectations of color transparency.