ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-Fermion Production in Electron-Positron Collisions

132   0   0.0 ( 0 )
 نشر من قبل Michael Kobel
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This report summarizes the results of the two-fermion working group of the LEP2-MC workshop, held at CERN from 1999 to 2000. Recent developments in the theoretical calculations of the two fermion production process in the electron-positron collision at LEP2 center of the mass energies are reported. The Bhabha process and the production of muon, tau, neutrino and quark pairs is covered. On the basis of comparison of various calculations, theoretical uncertainties are estimated and compared with those needed for the final LEP2 data analysis. The subjects for the further studies are identified.



قيم البحث

اقرأ أيضاً

This report summarises the results of the four-fermion working group of the LEP2-MC workshop, held at CERN from 1999 to 2000. Recent developments in the calculation of four-fermion processes in electron-positron collisions at LEP-2 centre-of-mass ene rgies are presented, concentrating on predictions for four main reactions: W-pair production, visible photons in four-fermion events, single-W production and Z-pair production. Based on a comparison of results derived within different approaches, theoretical uncertainties on these predictions are established.
The scaling of charged hadron fragmentation functions to the Tsallis distribution for $0.01 lessapprox x lessapprox 0.2$ is presented for various $e^+e^-$ collision energies. A possible microcanonical generalisation of the Tsallis distribution is pro posed, which gives good agreement with measured data up to $xapprox1$. The proposal is based on superstatistics and a $KNO$ like scaling of multiplicity distributions in $e^+e^-$ experiments.
78 - S. Bondarenko 2020
This paper presents the high-precision theoretical predictions for $e^+e^- to l^-l^+$ scattering. Calculations are performed using the {tt SANC} system. They take into account complete one-loop electroweak radiative corrections as well as longitudina l polarization of initial beams. Reaction observables are obtained using the helicity amplitude method with taking into account initial and final state fermion masses. Numerical results are given for the center-of-mass energy range $sqrt{s}=250-1000$ GeV with various degrees of polarization.
In this work we study the e^{+}e^{-}tophi K^{+}K^{-} reaction. The leading order electromagnetic contributions to this process involve the gamma*phi K^{+}K^{-} vertex function with a highly virtual photon. We calculate this function at low energies u sing Rchi PT supplemented with the anomalous term for the VVP interactions. Tree level contributions involve the kaon form factors and the K*K transition form factors. We improve this result, valid for low photon virtualities, replacing the lowest order terms in the kaon form factors and K*K transition form factors by the form factors as obtained in Uchi PT in the former case and the ones extracted from recent data on e^{+}e^{-}to KK* in the latter case. We calculate rescattering effects which involve meson-meson amplitudes. The corresponding result is improved using the unitarized meson-meson amplitudes containing the scalar poles instead of the lowest order terms. Using the BABAR value for BR(Xto phi f_{0})Gamma (Xto e^{+} e^{-}), we calculate the contribution from intermediate X(2175). A good description of data is obtained in the case of destructive interference between this contribution and the previous ones, but more accurate data on the isovector K*K transition form factor is required in order to exclude contributions from an intermediate isovector resonance to e^{+}e^{-}to phi K^{+}K^{-} around 2.2 GeV.
In the paper, we present QCD predictions for $eta_{c} + gamma$ production at an electron-position collider up to next-to-next-to-leading order (NNLO) accuracy without renormalization scale ambiguities. The NNLO total cross-section for $e^{+}+e^{-}tog amma+eta_{c}$ using the conventional scale-setting approach has large renormalization scale ambiguities, usually estimated by choosing the renormalization scale to be the $e^+ e^-$ center-of-mass collision energy $sqrt{s}$. The Principle of Maximum Conformality (PMC) provides a systematic way to eliminate such renormalization scale ambiguities by summing the nonconformal $beta$ contributions into the QCD coupling $alpha_s(Q^2)$. The renormalization group equation then sets the value of $alpha_s$ for the process. The PMC renormalization scale reflects the virtuality of the underlying process, and the resulting predictions satisfy all of the requirements of renormalization group invariance, including renormalization scheme invariance. After applying the PMC, we obtain a scale-and-scheme independent prediction, $sigma|_{rm NNLO, PMC}simeq 41.18$ fb for $sqrt{s}$=10.6 GeV. The resulting pQCD series matches the series for conformal theory and thus has no divergent renormalon contributions. The large $K$ factor which contributes to this process reinforces the importance of uncalculated NNNLO and higher-order terms. Using the PMC scale-and-scheme independent conformal series and the $rm Padacute{e}$ approximation approach, we predict $sigma|_{rm NNNLO, PMC+Pade} simeq 21.36$ fb, which is consistent with the recent BELLE measurement $sigma^{rm obs}$=$16.58^{+10.51}_{-9.93}$ fb at $sqrt{s} simeq 10.6$ GeV. This procedure also provides a first estimate of the NNNLO contribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا