ترغب بنشر مسار تعليمي؟ اضغط هنا

HIJING Model Prediction on Squeeze-Out of Particles in Nucleus-Nucleus Interactions at Super High Energies

48   0   0.0 ( 0 )
 نشر من قبل Galoyan Aida
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Elliptic flow of hard partons (P>5 GeV), squeeze-out of soft partons (P<=5 GeV) and produced particles are predicted in the framework of the HIJING model. They are caused due to jet quenching and heterogeneity of the interaction region.



قيم البحث

اقرأ أيضاً

We present a detailed study of chemical freeze-out in nucleus-nucleus collisions at beam energies of 11.6, 30, 40, 80 and 158A GeV. By analyzing hadronic multiplicities within the statistical hadronization approach, we have studied the strangeness pr oduction as a function of centre of mass energy and of the parameters of the source. We have tested and compared differe
We have extended our model for charged current neutrino-nucleus interactions to neutral current reactions. For the elementary neutrino-nucleon interaction, we take into account quasielastic scattering, Delta excitation and the excitation of the reson ances in the second resonance region. Our model for the neutrino-nucleus collisions includes in-medium effects such as Fermi motion, Pauli blocking, nuclear binding, and final-state interactions. They are implemented by means of the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) coupled-channel transport model. This allows us to study exclusive channels, namely pion production and nucleon knockout. We find that final-state interactions modify considerably the distributions through rescattering, charge-exchange and absorption. Side-feeding induced by charge-exchange scattering is important in both cases. In the case of pions, there is a strong absorption associated with the in-medium pionless decay modes of the Delta, while nucleon knockout exhibits a considerable enhancement of low energy nucleons due to rescattering. At neutrino energies above 1 GeV, we also obtain that the contribution to nucleon knockout from Delta excitation is comparable to that from quasielastic scattering.
We present a detailed study of chemical freeze-out in nucleus-nucleus collisions at beam energies of 11.6, 30, 40, 80 and 158A GeV. By analyzing hadronic multiplicities within the statistical hadronization approach, we have studied the chemical equil ibration of the system as a function of center of mass energy and of the parameters of the source. Additionally, we have tested and compared differe
Studying experimental data obtained at ITEP [1] on neutron production in interactions of protons with various nuclei in the energy range from 747 MeV up to 8.1 GeV, we have found that slow neutron spectra have scaling and asymptotic properties [2]. T he spectra weakly depend on the collision energy at momenta of projectile protons larger than 5 - 6 GeV/c. These properties are taken into account in the Geant4 Fritiof (FTF) model. The improved FTF model describes as well as the Geant4 Bertini model the experimental data on neutron production by 1.2 GeV and 1.6 GeV protons on targets (Fe, Pb) [3] and by 3.0 GeV protons on various targets (Al, Fe, Pb) [4]. For neutron production in antiproton-nucleus interactions, it was demonstrated that the FTF results are in a satisfactory agreement with experimental data of the LEAR collaboration [5]. The FTF model gives promising results for neutron production in nucleus - nucleus interactions at projectile energy 1 - 2 GeV per nucleon [6]. The observed properties allow one to predict neutron yields in the nucleus-nucleus interactions at high and very high energies. Predictions for the NICA/MPD experiment at JINR are presented.
The GiBUU model, which implements all reaction channels relevant at medium neutrino energy, is used to investigate the neutrino and antineutrino scattering on iron. Results for integrated cross sections are compared with NOMAD and MINOS data. It is s hown, that final state interaction can noticeably change the spectra of the outgoing hadrons. Predictions for the Miner$ u$a experiment are made for pion spectra, averaged over NuMI neutrino and antineutrino fluxes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا