ﻻ يوجد ملخص باللغة العربية
CP(N-1) model with topological term is numerically studied. The topological charge distribution P(Q) is calculated and then transformed to the partition function Z($theta$) as a function of $theta$ parameter. In the strong coupling region, P(Q) shows a gaussian behavior, which indicates a first order phase transition at $theta =pi$. In the weak coupling region, P(Q) deviates from gaussian. A bending behavior of resulting F($theta$) at $theta eq pi$, which might be a signal of a first order phase transition, could be misled by large errors coming from the fourier transform of P(Q). Results are shown mainly for CP(3) case.
We numerically study the phase structure of the CP(1) model in the presence of a topological $theta$-term, a regime afflicted by the sign problem for conventional lattice Monte Carlo simulations. Using a bond-weighted Tensor Renormalization Group met
A $theta$ term in lattice field theory causes the sign problem in Monte Carlo simulations. This problem can be circumvented by Fourier-transforming the topological charge distribution $P(Q)$. This strategy, however, has a limitation, because errors o
The topological charge distribution P(Q) is calculated for lattice ${rm CP}^{N-1}$ models. In order to suppress lattice cut-off effects we employ a fixed point (FP) action. Through transformation of P(Q) we calculate the free energy $F(theta)$ as a f
We investigate four-dimensional compact U(1) lattice gauge theory with a monopole term added to the Wilson action. First we consider the phase structure at negative $beta$, revealing some properties of a third phase region there, in particular the ex
The weak coupling region of CP$^{N-1}$ lattice field theory with the $theta$-term is investigated. Both the usual real theta method and the imaginary theta method are studied. The latter was first proposed by Bhanot and David. Azcoiti et al. proposed