ﻻ يوجد ملخص باللغة العربية
We study the electroweak phase transition by lattice simulations of an effective 3--dimensional theory, for a Higgs mass of about 70 GeV. Exploiting, among others, a variant of the equal weight criterion of phase equilibrium, we obtain transition temperature, latent heat and surface tension, and compare with M_H approx 35 GeV. In the broken phase masses and Higgs condensates are compared to perturbation theory. For the symmetric phase, bound state masses and the static force are determined.
We study the electroweak phase transition by lattice simulations of an effective 3-dimensional theory, for a Higgs mass of about $70$ GeV. Exploiting a variant of the equal weight criterion of phase equilibrium, we obtain transition temperature, late
We study the electroweak phase transition by lattice simulations of an effective 3-dimensional theory, for a Higgs mass of about $35 GeV$. In the broken symmetry phase our results on masses and the Higgs condensate are consistent with 2-loop perturba
We study the finite-temperature electroweak phase transition of the minimal standard model within the four-dimensional SU(2) gauge-Higgs model. Monte Carlo simulations are performed for intermediate values of the Higgs boson mass in the range $50 les
We study the finite-temperature phase transition of the four-dimensional SU(2) gauge-Higgs model for intermediate values of the Higgs boson mass in the range $50 lsim m_H lsim 100$GeV on a lattice with the temporal lattice size $N_t=2$. The order of
We study the strength of the electroweak phase transition in models with two light Higgs doublets and a light SU(3)_c triplet by means of lattice simulations in a dimensionally reduced effective theory. In the parameter region considered the transiti