ترغب بنشر مسار تعليمي؟ اضغط هنا

The D234 action for light quarks

67   0   0.0 ( 0 )
 نشر من قبل Mark Alford
 تاريخ النشر 1995
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate a new light fermion action (the ``D234 action), which is accurate up to $O(a^3)$ and tadpole-improved $O(a alpha_s)$ errors. Using D234 with Symanzik- and tadpole-improved glue we find evidence that continuum results for the quenched hadron spectrum (pion, rho and nucleon) can be obtained on coarse lattices.

قيم البحث

اقرأ أيضاً

We develop an improved lattice action for heavy quarks based on Brillouin-type fermions, that have excellent energy-momentum dispersion relation. The leading discretization errors of $O(a)$ and $O(a^2)$ are eliminated at tree-level. We carry out a sc aling study of this improved Brillouin fermion action on quenched lattices by calculating the charmonium energy-momentum dispersion relation and hyperfine splitting. We present a comparison to standard Wilson fermions and domain-wall fermions.
149 - W. Schroers 2001
As part of a systematic algorithm study, we present first results on a performance comparison between a multibosonic algorithm and the hybrid Monte Carlo algorithm as employed by the SESAM collaboration. The standard Wilson fermion action is used on 32*16^3 lattices at beta=5.5.
We present results on an analysis of the decay constants f_B and f_Bs with two flavours of sea quark. The calculation has been carried out on 3 different bare gauge couplings and 4 sea quark masses at each gauge coupling, with m_pi/m_rho ranging from 0.8 to 0.6. We employ the Fermilab formalism to perform calculations with heavy quarks whose mass is in the range of the b-quark. A detailed comparison with a quenched calculation using the same action is made to elucidate the effects due to the sea quarks.
Generalized parton distributions encompass a wealth of information concerning the three-dimensional quark and gluon structure of the nucleon, and thus provide an ideal focus for the study of hadron structure using lattice QCD. The special limits corr esponding to form factors and parton distributions are well explored experimentally, providing clear tests of lattice calculations, and the lack of experimental data for more general cases provides opportunities for genuine predictions and for guiding experiment. We present results from hybrid calculations with improved staggered (Asqtad) sea quarks and domain wall valence quarks at pion masses down to 350 MeV.
We report on exploratory studies of heavy-light meson semileptonic decays using Asqtad light quarks, NRQCD heavy quarks and Symanzik improved glue on coarse quenched lattices. Oscillatory contributions to three-point correlators coming from the stagg ered light quarks are found to be handled well by Bayesian fitting methods. B meson decays to both the Goldstone pion and to one of the point-split non-Goldstone pions are investigated. One-loop perturbative matching of NRQCD/Asqtad heavy-light currents is incorporated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا