ﻻ يوجد ملخص باللغة العربية
Character expansion developed in real space renormalization group (RSRG) approach is applied to U(1) lattice gauge theory with $th$-term in 2 dimensions. Topological charge distribution $P(Q)$ is shown to be of Gaussian form at any $b$(inverse coupling constant). The partition function $Z(th)$ at large volume is shown to be given by the elliptic theta function. It provides the information of the zeros of partition function as an analytic function of $ze= e^{i th}$ ($th$ = theta parameter). These partition function zeros lead to the phase transition at $th=pi$. Analytical results will be compared with the MC simulation results. In MC simulation, we adopt (i)``set method and (ii)``trial function method.
Monte Carlo simulation of gauge theories with a $theta$ term is known to be extremely difficult due to the sign problem. Recently there has been major progress in solving this problem based on the idea of complexifying dynamical variables. Here we co
In 4D compact U(1) lattice gauge theory with a monopole term added to the Wilson action we first reveal some properties of a third phase region at negative $beta$. Then at some larger values of the monopole coupling $lambda$ by a finite-size analysis
We investigate four-dimensional compact U(1) lattice gauge theory with a monopole term added to the Wilson action. First we consider the phase structure at negative $beta$, revealing some properties of a third phase region there, in particular the ex
We investigate critical properties of the phase transition in the four-dimensional compact U(1) lattice gauge theory supplemented by a monopole term for values of the monopole coupling $lambda$ such that the transition is of second order. It has been
We discuss a new strategy for treating the complex action problem of lattice field theories with a $theta$-term based on density of states (DoS) methods. The key ingredient is to use open boundary conditions where the topological charge is not quanti