ﻻ يوجد ملخص باللغة العربية
The overlap fermion offers the considerable advantage of exact chiral symmetry on the lattice, but is numerically intensive. This can be made affordable while still providing large lattice volumes, by using coarse lattice spacing, given that good scaling and localization properties are established. Here, using overlap fermions on quenched Iwasaki gauge configurations, we demonstrate directly that, with appropriate choice of negative Wilsons mass, the overlap Dirac operators range is comfortably small in lattice units for each of the lattice spacings 0.20 fm, 0.17 fm, and 0.13 fm (and scales to zero in physical units in the continuum limit). In particular, our direct results contradict recent speculation that an inverse lattice spacing of 1 GeV is too low to have satisfactory localization. Furthermore, hadronic masses (available on the two coarser lattices) scale very well.
The overlap fermion offers the tremendous advantage of exact chiral symmetry on the lattice, but is numerically intensive. This can be made affordable while still providing large lattice volumes, by using coarse lattice spacing, given that good scali
We present an update on our on-going project to compute hadronic observables for Nf=2 flavours of O(a) improved Wilson fermions at small lattice spacings. The procedure to determine the lattice scale via the mass of the Omega baryon is described. Fur
The charmed-strange meson masses are calculated on a quenched lattice QCD. The charm and strange quark propagators are calculated on the same lattice with the overlap fermion. $16^3times 72$ lattice with Wilson gauge action at $beta=0.6345$ are used.
We study the finite temperature localization transition in the spectrum of the overlap Dirac operator. Simulating the quenched approximation of QCD, we calculate the mobility edge, separating localized and delocalized modes in the spectrum. We do thi
The calculation of the strangeness and charmness of the nucleon is presented with overlap fermion action on 2+1 flavor domain wall fermion configurations. We adopt stochastic grid sources and the low mode substitution technique to improve the signals