ﻻ يوجد ملخص باللغة العربية
Protons and neutrons have a rich structure in terms of their constituents, the quarks and gluons. Understanding this structure requires solving Quantum Chromodynamics (QCD). However QCD is extremely complicated, so we must numerically solve the equations of QCD using a method known as lattice QCD. Here we describe a typical lattice QCD calculation by examining our recent computation of the nucleon axial charge.
We report on a lattice QCD calculation of the nucleon axial charge, $g_A$, using M{o}bius Domain-Wall fermions solved on the dynamical $N_f=2+1+1$ HISQ ensembles after they are smeared using the gradient-flow algorithm. The calculation is performed w
The nucleon axial charge is calculated as a function of the pion mass in full QCD. Using domain wall valence quarks and improved staggered sea quarks, we present the first calculation with pion masses as light as 354 MeV and volumes as large as (3.5
The nucleon axial form factor is a dominant contribution to errors in neutrino oscillation studies. Lattice QCD calculations can help control theory errors by providing first-principles information on nucleon form factors. In these proceedings, we pr
We report on our calculation of the nucleon axial charge gA in QCD with two flavours of dynamical quarks. A detailed investigation of systematic errors is performed, with a particular focus on contributions from excited states to three-point correlat
The current status of some nucleon isovector observables, the vector charge, (g_V), axial charge, (g_A), quark momentum fraction, (langle x rangle_{u-d}), and quark helicity fraction, (langle x rangle_{Delta u - Delta d}), calculated using recent RBC