ﻻ يوجد ملخص باللغة العربية
We present results for the Delta S=2 matrix elements which are required to study neutral kaon mixing in the standard model (SM) and beyond (BSM). We also provide leading chiral order results for the matrix elements of the electroweak penguin operators which give the dominant Delta I=3/2 contribution to direct CP violation in K->pipi decays. Our calculations were performed with Neuberger fermions on two sets of quenched Wilson gauge configurations at inverse lattice spacings of approximately 2.2 GeV and 1.5 GeV. All renormalizations were implemented non-perturbatively in the RI/MOM scheme, where we accounted for sub-leading operator product expansion corrections and discretization errors. We find ratios of non-SM to SM matrix elements which are roughly twice as large as in the only other dedicated lattice study of these amplitudes. On the other hand, our results for the electroweak penguin matrix elements are in good agreement with two recent domain-wall fermion calculations. As a by-product of our study, we determine the strange quark mass. Our main results are summarized and discussed in Sec. VII. Within our statistics, we find no evidence for scaling violations.
We present results for Delta I=3/2 and Delta S=2 matrix elements relevant for CP violation in K->Pi Pi decays and for the K_S-K_L mass difference in the standard model and beyond. They were obtained with Neuberger fermions on quenched gauge configura
We calculate results for K to pi and K to 0 matrix elements to next-to-leading order in 2+1 flavor partially quenched chiral perturbation theory. Results are presented for both the Delta I=1/2 and 3/2 channels, for chiral operators corresponding to c
Recently the branching ratios for $B^+to K^+bar K^0$ and $B^0 to K^0 bar K^0$ have been measured. Data indicate that the annihilation amplitudes in these decays are not zero. A non-zero annihilation amplitude plays an important role in CP violation f
We calculate BSM hadronic matrix elements for $K^0-bar K^0$ mixing in the Dual QCD approach (DQCD). The ETM, SWME and RBC-UKQCD lattice collaborations find the matrix elements of the BSM density-density operators $mathcal{O}_i$ with $i=2-5$ to be rat
We consider the K^0 - bar K^0 and B^0 - bar B^0 mixings in the MSSM with the two-Higgs-doublet scalar sector featuring explicit CP violation, and the Yukawa sector of type II. In the case of strong mixing between CP-odd and CP-even states the existen