ترغب بنشر مسار تعليمي؟ اضغط هنا

Density-density correlators using all-to-all propagators

444   0   0.0 ( 0 )
 نشر من قبل Giannis Koutsou
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of gauge invariant density-density correlators. Density-density correlators probe hadron wave functions and thus can be used to study hadron deformation. Their zero momentum projection requires the computation of all-to-all propagators, which are evaluated with the standard stochastic technique, the dilution method and the stochastic sequential technique. We compare the results to a previous analysis that did not employ the zero momentum projection.



قيم البحث

اقرأ أيضاً

67 - J. Peisa , C. Michael 1997
We measure the ground and excited states for B mesons in the static limit using maximally variance reduced estimators for light quark propagators. Because of the large number of propagators we are able to measure accurately also orbitally excited P, D and F states. We also present some results for Lambda_b.
We describe a method to construct irreducible baryon operators using all-to-all quark propagators. It was demonstrated earlier that a large basis of extended baryon operators on anisotropic, quenched lattices can be used to reliably extract the masse s of 5 or more excited states in the nucleon channel. All-to-all quark propagators are expected to be needed when studying these excited states on light, dynamical configurations because contributions from multi-particle states are expected to be significant. The dilution method is used to approximate the all-to-all quark propagators. Low-lying eigenmodes can also be used if necessary. For efficient computation of matrix elements of the interpolating operators, the algorithms should exploit the fact that many extended baryon operators can be obtained from the different linear combinations of three-quark colour-singlet operators. The sparseness of the diluted noise vectors also afford several computation simplifications. Some preliminary results are presented for nucleon effective masses.
282 - J. Bulava , R. Edwards , K.J. Juge 2008
Hadron spectroscopy on dynamical configurations are faced with the difficulties of dealing with the mixing of single particle states and multi-hadron states (for large spatial volumes and light dynamical quarks masses). It is conceivable that explici t multi-hadron interpolating operators will be necessary for obtaining sufficiently good overlap onto multi-hadron states in order to extract the low-lying excitation spectrum. We explore here the feasibility of using four noise diluted all-to-all quark propagators in the construction of explicit two-hadron operators on quenched, anisotropic lattices. Our longer term goal is to use these operators on large anisotropic, dynamical configurations for hadron spectroscopy.
We report on our calculation of the pion electromagnetic form factor with two-flavors of dynamical overlap quarks. Gauge configurations are generated using the Iwasaki gauge action on a 16^3 times 32 lattice at the lattice spacing of 0.12fm with sea quark masses down to m_s/6, where m_s is the physical strange quark mass. We describe our setup to measure the form factor through all-to-all quark propagators and present preliminary results.
Gauge invariant density-density correlators yield detailed information on hadron structure. Hadron deformation and form factors can be extracted for momentum transfers up to about 6 GeV$^2$. We use stochastic techniques and dilution to compute the al l to all propagator required for the exact evaluation of density-density correlators. We present first results for the pion form factor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا