ﻻ يوجد ملخص باللغة العربية
We study the scaling behavior of the step scaling function for SU(3) gauge theory, employing the Iwasaki gauge action and the Luescher-Weisz gauge action. In particular, we test the choice of boundary counter terms and apply a perturbative procedure for removal of lattice artifacts for the simulation results in the extrapolation procedure. We confirm the universality of the step scaling functions at both weak and strong coupling regions. We also measure the low energy scale ratio with the Iwasaki action, and confirm its universality.
The renormalisation group running of the quark mass is determined non-perturbatively for a large range of scales, by computing the step scaling function in the Schroedinger Functional formalism of quenched lattice QCD both with and without O(a) impro
We present the results of an extended scaling test of quenched Wilson twisted mass QCD. We fix the twist angle by using two definitions of the critical mass, the first obtained by requiring the vanishing of the pseudoscalar meson mass m_PS for standa
We calculate the step scaling function, the lattice analog of the renormalization group $beta$-function, for an SU(3) gauge theory with twelve flavors. The gauge coupling of this system runs very slowly, which is reflected in a small step scaling fun
A method for computing renormalization constants in the Rome Southampton scheme with volume sources and arbitrary momenta is described. This new method is found to enable controlled and precise continuum extrapolations and opens the way to compute th
The overlap fermion offers the tremendous advantage of exact chiral symmetry on the lattice, but is numerically intensive. This can be made affordable while still providing large lattice volumes, by using coarse lattice spacing, given that good scali