ترغب بنشر مسار تعليمي؟ اضغط هنا

Semileptonic D->pi/K and B->pi/D decays in 2+1 flavor lattice QCD

94   0   0.0 ( 0 )
 نشر من قبل Masataka Okamoto
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results for form factors of semileptonic decays of $D$ and $B$ mesons in 2+1 flavor lattice QCD using the MILC gauge configurations. With an improved staggered action for light quarks, we successfully reduce the systematic error from the chiral extrapolation. The results for $D$ decays are in agreement with experimental ones. The results for B decays are preliminary. Combining our results with experimental branching ratios, we then obtain the CKM matrix elements $|V_{cd}|$, $|V_{cs}|$, $|V_{cb}|$ and $|V_{ub}|$. We also check CKM unitarity, for the first time, using only lattice QCD as the theoretical input.

قيم البحث

اقرأ أيضاً

74 - S. Di Vita , B. Haas , V. Lubicz 2011
We present lattice results for the vector and scalar form factors of the semileptonic decays D -> pi ell u_ell and D -> K ell u_ell in the physical range of values of squared four momentum transfer q^2, obtained with N_f=2 maximally twisted Wilson fermions simulated at three different lattice spacings (a ~ 0.102 fm, 0.086 fm, 0.068 fm) with pion masses as light as 270 MeV and m_pi L gtrsim 4. The form factors are extracted using a double ratios strategy, which allows a good statistical accuracy and is independent of the vector current renormalization constant. The chiral/continuum extrapolation is performed through a simultaneous fit in the three variables (m_pi, q^2, a) using HMChPT formulae with additional O(a^2) terms that parametrically account for the lattice spacing dependence. Our results are in very good agreement with the experimental data in the full q^2 range for both D -> pi ell u_ell and D -> K ell u_ell. At zero momentum transfer we obtain f^{D->pi}(0) = 0.65(6)_{stat}(6)_{syst} and f^{D->K}(0) = 0.76(5)_{stat}(5)_{syst}, where the systematic error does not include the effects of quenching the strange and the charm quarks. Our findings are in good agreement with recent lattice calculations at N_f = 2+1.
We extract the form factors relevant for semileptonic decays of D and B mesons from a relativistic computation on a fine lattice in the quenched approximation. The lattice spacing is a=0.04 fm (corresponding to a^{-1}=4.97 GeV), which allows us to ru n very close to the physical B meson mass, and to reduce the systematic errors associated with the extrapolation in terms of a heavy quark expansion. For decays of D and D_s mesons, our results for the physical form factors at q^2=0 are as follows: f_+^{D to pi}(0)= 0.74(6)(4), f_+^{D to K}(0)= 0.78(5)(4) and f_+^{D_s to K}(0)=0.68(4)(3). Similarly, for B and B_s we find: f_+^{B to pi}(0)=0.27(7)(5), f_+^{B to K}(0)=0.32(6)(6) and f_+^{B_s to K}(0)=0.23(5)(4). We compare our results with other quenched and unquenched lattice calculations, as well as with light-cone sum rule predictions, finding good agreement.
Time-dependent $CP$ asymmetries in the decay rates of the singly Cabibbo-suppressed decays $D^0rightarrow K^-K^+$ and $D^0rightarrow pi^-pi^+$ are measured in $pp$ collision data corresponding to an integrated luminosity of 3.0 fb$^{-1}$ collected by the LHCb experiment. The $D^0$ mesons are produced in semileptonic $b$-hadron decays, where the charge of the accompanying muon is used to determine the initial state as $D^0$ or $bar{D}^0$. The asymmetries in effective lifetimes between $D^0$ and $bar{D}^0$ decays, which are sensitive to indirect $CP$ violation, are determined to be begin{align*} A_{Gamma}(K^-K^+) = (-0.134 pm 0.077 ; {}^{+0.026}_{-0.034})% , A_{Gamma}(pi^-pi^+) = (-0.092pm 0.145 ; {}^{+0.025}_{-0.033})% , end{align*} where the first uncertainties are statistical and the second systematic. This result is in agreement with previous measurements and with the hypothesis of no indirect $CP$ violation in $D^0$ decays.
Using proton-proton collision data collected by the LHCb experiment at sqrt(s) = 7 TeV, corresponding to an integrated luminosity of 1.0 fb^{-1}, the ratio of branching fractions of the B0 -> D*- pi+ pi- pi+ decay relative to the B0 -> D*- pi+ decay is measured to be B(B0 -> D*- pi+ pi- pi+) / B(B0 -> D*- pi+) = 2.64 pm 0.04 (stat.) pm 0.13 (syst.). The Cabibbo-suppressed decay B0 -> D*- K+ pi- pi+ is observed for the first time and the measured ratio of branching fractions is B(B0 -> D*- K+ pi- pi+) / B(B0 -> D*- pi+ pi- pi+) = (6.47 pm 0.37 (stat.) pm 0.35 (syst.)) x 10^{-2}. A search for orbital excitations of charm mesons contributing to the B0 -> D*- pi+ pi- pi+ final state is also performed, and the first observation of the B0 -> Dbar_{1}(2420)^0 pi+ pi- decay is reported with the ratio of branching fractions B(B0 -> (Dbar_{1}(2420)^0 -> D*- pi+) pi- pi+) / B(B0 -> D*- pi+ pi- pi+) = (2.04 pm 0.42 (stat.) pm 0.22 (syst.)) x 10^{-2}, where the numerator represents a product of the branching fractions B(B0 -> Dbar_{1}(2420)^0 pi- pi+) and B(Dbar_{1}(2420)^0 -> D*- pi+).
We present results for neutral D-meson mixing in 2+1-flavor lattice QCD. We compute the matrix elements for all five operators that contribute to D mixing at short distances, including those that only arise beyond the Standard Model. Our results have an uncertainty similar to those of the ETM collaboration (with 2 and with 2+1+1 flavors). This work shares many features with a recent publication on B mixing and with ongoing work on heavy-light decay constants from the Fermilab Lattice and MILC Collaborations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا