ﻻ يوجد ملخص باللغة العربية
Analyzing correlation functions of charmonia at finite temperature ($T$) on $32^3times(32-96)$ anisotropic lattices by the maximum entropy method (MEM), we find that $J/psi$ and $eta_c$ survive as distinct resonances in the plasma even up to $T simeq 1.6 T_c$ and that they eventually dissociate between $1.6 T_c$ and $1.9 T_c$ ($T_c$ is the critical temperature of deconfinement). This suggests that the deconfined plasma is non-perturbative enough to hold heavy-quark bound states. The importance of having sufficient number of temporal data points in the MEM analysis is also emphasized.
We study the behavior across the deconfinement phase transition of the chromoelectric flux tube generated by a static quark and a static antiquark for several distances between them. We present preliminary results for distances up to 1.33 fm and temperatures up to $1.5 T_c$.
The phase structure of hot gauge theories with dynamical matter fields is reexamined in the canonical ensemble with respect to triality. We discuss properties of chromoelectric and chromomagnetic sectors of the theory and show whereas electric charge
We extract the spectral functions in the scalar, pseudo-scalar, vector, and axial vector channels above the deconfinement phase transition temperature (Tc) using the maximum entropy method (MEM). We use anisotropic lattices, 32^3 * 32, 40, 54, 72, 80
We find a strong evidence for the survival of $J/Psi$ and $eta_c$ as spatially-localized $cbar c$ (quasi-)bound states above the QCD critical temperature $T_c$, by investigating the boundary-condition dependence of their energies and spectral functio
We study the temperature dependence of bottomonium for temperatures in the range $0.4 T_c < T < 2.1 T_c$, using nonrelativistic dynamics for the bottom quark and full relativistic lattice QCD simulations for $N_f=2$ light flavors on a highly anisotro