ﻻ يوجد ملخص باللغة العربية
We study the spectrum of confining strings in SU(3) pure gauge theory, by means of lattice Monte Carlo simulations, using torelon operators in different representations of the gauge group. Our results provide direct evidence that the string spectrum is according to predictions based on $n$-ality. Torelon correlations in the rank-2 symmetric channel appear to be well reproduced by a two-exponential picture, in which the lowest state is given by the fundamental string $sigma_1=sigma$, the heavier string state is such that the ratio $sigma_2/sigma_1$ is approximately given by the Casimir ratio $C_{rm sym}/C_{rm f} = 5/2$, and the torelon has a much smaller overlap with the lighter fundamental string state.
The light mesons such as pi, rho, omega, f0, and a0 are possible candidates of magnetic degrees of freedom, if a magnetic dual picture of QCD exists. We construct a linear sigma model to describe spontaneous breaking of the magnetic gauge group, in w
We study chaotic motion of classical closed strings in the five-dimensional Anti-de Sitter (AdS) soliton spacetime. We first revisit classical chaos using a cohomogeneity-1 string ansatz. We then consider turbulent behaviors of the classical strings
Complex structures are determined for surfaces with $S^2$ and $T^2$ topologies generated by the dynamical triangulation method. For a surface with $S^2$ topology the spacial distribution of the conformal mode is obtained, while for the case of $T^2$
We use Dirac-Born-Infeld action to study the spinning D-string in $AdS_3 $ background in the presence of both NS-NS and RR fluxes. We compute the scaling relation between the energy (E) and spin (S) in the `long string limit. The energy of these spik
The width of the quantum delocalization of the QCD strings is investigated in effective string models beyond free Nambu-Goto approximation. We consider two Lorentzian-invariant boundary-terms in the Luscher-Weisz string action in addition to self-int