ﻻ يوجد ملخص باللغة العربية
We only require generalized chiral symmetry and $gamma_5$-hermiticity, which leads to a large class of Dirac operators describing massless fermions on the lattice, and use this framework to give an overview of developments in this field. Spectral representations turn out to be a powerful tool for obtaining detailed properties of the operators and a general construction of them. A basic unitary operator is seen to play a central r^ole in this context. We discuss a number of special cases of the operators and elaborate on various aspects of index relations. We also show that our weaker conditions lead still properly to Weyl fermions and to chiral gauge theories.
Instead of the Ginsparg-Wilson (GW) relation we only require generalized chiral symmetry and show that this results in a larger class of Dirac operators describing massless fermions, which in addition to GW fermions and to the ones proposed by Fujika
We propose a novel approach to the Graphene system using a local field theory of 4 dimensional QED model coupled to 2+1 dimensional Dirac fermions, whose velocity is much smaller than the speed of light. Performing hybrid Monte Carlo simulations of t
We still extend the large class of Dirac operators decribing massless fermions on the lattice found recently, only requiring that such operators decompose into Weyl operators. After deriving general relations and constructions of operators, we study
We define a family of Schroedinger Functional renormalization schemes for the four-quark multiplicatively renormalizable operators of the $Delta F = 1$ and $Delta F = 2$ effective weak Hamiltonians. Using the lattice regularization with quenched Wils
We study the effect of dynamical gauge field on the Kaplans chiral fermion on a boundary in the strong gauge coupling limit in the extra dimension. To all orders of the hopping parameter expansion, we prove exact parity invariance of the fermion prop