ترغب بنشر مسار تعليمي؟ اضغط هنا

Calculation of Nucleon Electromagnetic Form Factors

82   0   0.0 ( 0 )
 نشر من قبل John W. Negele
 تاريخ النشر 2002
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The fomalism is developed to express nucleon matrix elements of the electromagnetic current in terms of form factors consistent with the translational, rotational, and parity symmetries of a cubic lattice. We calculate the number of these form factors and show how appropriate linear combinations approach the continuum limit.

قيم البحث

اقرأ أيضاً

112 - C. Alexandrou 2019
The role of the strange quarks on the low-energy interactions of the proton can be probed through the strange electromagnetic form factors. Knowledge of these form factors provides essential input for parity-violating processes and contributes to the understanding of the sea quark dynamics. We determine the strange electromagnetic form factors of the nucleon within the lattice formulation of Quantum Chromodynamics using simulations that include light, strange and charm quarks in the sea all tuned to their physical mass values. We employ state-of-the-art techniques to accurately extract the form factors for values of the momentum transfer square up to 0.8~GeV$^2$. We find that both the electric and magnetic form factors are statistically non-zero. We obtain for the strange magnetic moment $mu^s=-0.017(4)$, the strange magnetic radius $langle r^2_M rangle^s=-0.015(9)$~fm$^2$, and the strange charge radius $langle r^2_E rangle^s=-0.0048(6)$~fm$^2$.
The exact evaluation of the disconnected diagram contributions to the flavor-singlet pseudoscalar meson mass, the nucleon sigma term and the nucleon electromagnetic form factors, is carried out utilizing GPGPU technology with the NVIDIA CUDA platform . The disconnected loops are also computed using stochastic methods with several noise reduction techniques. Various dilution schemes as well as the truncated solver method are studied. We make a comparison of these stochastic techniques to the exact results and show that the number of noise vectors depends on the operator insertion in the fermionic loop.
The nucleon electromagnetic form factors continue to be of major interest for experimentalists and phenomenologists alike. They provide important insights into the structure of nuclear matter. For a range of interesting momenta they can be calculated on the lattice. The limiting factor continues to be the value of the pion mass. We present the latest results of the QCDSF collaboration using gauge configurations with two dynamical, non-perturbatively improved Wilson fermions at pion masses as low as 350 MeV.
We present results for the nucleon electromagnetic form factors, including the momentum transfer dependence and derived quantities (charge radii and magnetic moment). The analysis is performed using O(a) improved Wilson fermions in Nf=2 QCD measured on the CLS ensembles. Particular focus is placed on a systematic evaluation of the influence of excited states in three-point correlation functions, which lead to a biased evaluation, if not accounted for correctly. We argue that the use of summed operator insertions and fit ansatze including excited states allow us to suppress and control this effect. We employ a novel method to perform joint chiral and continuum extrapolations, by fitting the form factors directly to the expressions of covariant baryonic chiral effective field theory. The final results for the charge radii and magnetic moment from our lattice calculations include, for the first time, a full error budget. We find that our estimates are compatible with experimental results within their overall uncertainties.
We evaluate the strange nucleon electromagnetic form factors using an ensemble of gauge configurations generated with two degenerate maximally twisted mass clover-improved fermions with mass tuned to approximately reproduce the physical pion mass. In addition, we present results for the disconnected light quark contributions to the nucleon electromagnetic form factors. Improved stochastic methods are employed leading to high-precision results. The momentum dependence of the disconnected contributions is fitted using the model-independent z-expansion. We extract the magnetic moment and the electric and magnetic radii of the proton and neutron by including both connected and disconnected contributions. We find that the disconnected light quark contributions to both electric and magnetic form factors are non-zero and at the few percent level as compared to the connected. The strange form factors are also at the percent level but more noisy yielding statistical errors that are typically within one standard deviation from a zero value.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا