ترغب بنشر مسار تعليمي؟ اضغط هنا

Parallel tempering in full QCD with Wilson fermions

156   0   0.0 ( 0 )
 نشر من قبل Ernst-Michael Ilgenfritz
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the performance of QCD simulations with dynamical Wilson fermions by combining the Hybrid Monte Carlo algorithm with parallel tempering on $10^4$ and $12^4$ lattices. In order to compare tempered with standard simulations, covariance matrices between sub-ensembles have to be formulated and evaluated using the general properties of autocorrelations of the parallel tempering algorithm. We find that rendering the hopping parameter $kappa$ dynamical does not lead to an essential improvement. We point out possible reasons for this observation and discuss more suitable ways of applying parallel tempering to QCD.



قيم البحث

اقرأ أيضاً

The improvement of simulations of QCD with dynamical Wilson fermions by combining the Hybrid Monte Carlo algorithm with parallel tempering is studied on $10^4$ and $12^4$ lattices. As an indicator for decorrelation the topological charge is used.
QCD is investigated at finite temperature using Wilson fermions in the fixed scale approach. A 2+1 flavor stout and clover improved action is used at four lattice spacings allowing for control over discretization errors. The light quark masses in thi s first study are fixed to heavier than physical values. The renormalized chiral condensate, quark number susceptibility and the Polyakov loop is measured and the results are compared with the staggered formulation in the fixed N_t approach. The Wilson results at the finest lattice spacing agree with the staggered results at the highest N_t.
286 - S. Borsanyi , S. Durr , Z. Fodor 2012
QCD thermodynamics is considered using Wilson fermions in the fixed scale approach. The temperature dependence of the renormalized chiral condensate, quark number susceptibility and Polyakov loop is measured at four lattice spacings allowing for a co ntrolled continuum limit. The light quark masses are fixed to heavier than physical values in this first study. Finite volume effects are ensured to be negligible by using approriately large box sizes. The final continuum results are compared with staggered fermion simulations performed in the fixed N_t approach. The same continuum renormalization conditions are used in both approaches and the final results agree perfectly.
We continue our investigation of 2+1 flavor QCD thermodynamics using dynamical Wilson fermions in the fixed scale approach. Two additional pion masses, approximately 440 MeV and 285 MeV, are added to our previous work at 545 MeV. The simulations were performed at 3 or 4 lattice spacings at each pion mass. The renormalized chiral condensate, strange quark number susceptibility and Polyakov loop is obtained as a function of the temperature and we observe a decrease in the light chiral pseudo-critical temperature as the pion mass is lowered while the pseudo-critical temperature associated with the strange quark number susceptibility or the Polyakov loop is only mildly sensitive to the pion mass. These findings are in agreement with previous continuum results obtained in the staggered formulation.
The twisted reduced model of large $N$ QCD with two adjoint Wilson fermions is studied numerically using the Hybrid Monte Carlo method. This is the one-site model, whose large $N$ limit (large volume limit) is expected to be conformal or nearly confo rmal. The string tension calculated at $N$=289 approaches zero as we decrease quark mass and the preliminary value of the mass anomalous dimension $gamma_*$ is close to one if we assume that the theory is governed by an infrared fixed point. We also discuss the twisted reduced model with single adjoint Wilson fermion. The string tension remains finite as the quark mass decreases to zero, supporting that this is the confining theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا