ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-perturbative renormalization for a renormalization group improved gauge action

104   0   0.0 ( 0 )
 نشر من قبل Kiyotomo Ide
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Renormalization constants of vector ($Z_V$) and axial-vector ($Z_A$) currents are determined non-perturbatively in quenched QCD for a renormalization group improved gauge action and a tadpole improved clover quark action using the Schrodinger functional method. Non-perturbative values of $Z_V$ and $Z_A$ turn out to be smaller than the one-loop perturbative values by $O(10%)$ at $a^{-1}approx 1$ GeV. A sizable scaling violation of meson decay constants $f_pi$ and $f_rho$ observed with the one-loop renormalization factors remains even with non-perturbative renormalization.

قيم البحث

اقرأ أيضاً

Renormalization constants ($Z$-factors) of vector and axial-vector currents are determined non-perturbatively in quenched QCD for a renormalization group improved gauge action and a tadpole improved clover quark action using the Schrodinger functiona l method. Non-perturbative values of $Z$-factors turn out to be smaller than one-loop perturbative values by $O(15%)$ at lattice spacing of $a^{-1}approx$ 1 GeV. The pseudoscalar and vector meson decay constants calculated with the non-perturbative $Z$-factors show a much better scaling behavior compared to previous results obtained with tadpole improved one-loop $Z$-factors. In particular, the non-perturbative $Z$-factors normalized at infinite physical volume show that scaling violation of the decay constants are within about 10% up to the lattice spacing $a^{-1}sim 1$ GeV. The continuum estimates obtained from data in the range $a^{-1}=$ 1 -- 2 GeV agree with those determined from finer lattices ($a^{-1}sim 2-4$ GeV) with the standard action.
We apply non-perturbative renormalization to bilinears composed of improved staggered fermions. We explain how to generalize the method to staggered fermions in a way which is consistent with the lattice symmetries, and introduce a new type of lattic e bilinear which transforms covariantly and avoids mixing. We derive the consequences of lattice symmetries for the propagator and vertices. We implement the method numerically for hypercubic-smeared (HYP) and asqtad valence fermion actions, using lattices with asqtad sea quarks generated by the MILC collaboration. We compare the non-perturbative results so obtained to those from perturbation theory, using both scale-independent ratios of bilinears (of which we calculate 26), and the scale-dependent bilinears themselves. Overall, we find that one-loop perturbation theory provides a successful description of the results for HYP-fermions if we allow for a truncation error of roughly the size of the square of the one-loop term (for ratios) or of size O(1) times alpha^2 (for the bilinears themselves). Perturbation theory is, however, less successful at describing the non-perturbative asqtad results.
134 - Leonardo Chimirri 2019
We present our progress in the non-perturbative O(a) improvement and renormalization of tensor currents in three-flavor lattice QCD with Wilson-clover fermions and tree-level Symanzik improved gauge action. The mass-independent O(a) improvement facto r of tensor currents is determined via a Ward identity approach, and their renormalization group running is calculated via recursive finite-size scaling techniques, both implemented within the Schrodinger functional framework. We also address the matching factor between bare and renormalization group invariant currents for a range of lattice spacings < 0.1 fm, relevant for phenomenological large-volume lattice QCD applications.
We study the finite-temperature phase structure and the transition temperature of QCD with two flavors of dynamical quarks on a lattice with the temporal size $N_t=4$, using a renormalization group improved gauge action and the Wilson quark action im proved by the clover term. The region of a parity-broken phase is identified, and the finite-temperature transition line is located on a two-dimensional parameter space of the coupling ($beta=6/g^2$) and hopping parameter $K$. Near the chiral transition point, defined as the crossing point of the critical line of the vanishing pion mass and the line of finite-temperature transition, the system exhibits behavior well described by the scaling exponents of the three-dimensional O(4) spin model. This indicates a second-order chiral transition in the continuum limit. The transition temperature in the chiral limit is estimated to be $T_c = 171(4)$ MeV.
We propose a new strategy for the determination of the QCD coupling. It relies on a coupling computed in QCD with $N_{rm f} geq 3$ degenerate heavy quarks at a low energy scale $mu_{rm dec}$, together with a non-perturbative determination of the rati o $Lambda/mu_{rm dec}$ in the pure gauge theory. We explore this idea using a finite volume renormalization scheme for the case of $N_{rm f} = 3$ QCD, demonstrating that a precise value of the strong coupling $alpha_s$ can be obtained. The idea is quite general and can be applied to solve other renormalization problems, using finite or infinite volume intermediate renormalization schemes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا