ترغب بنشر مسار تعليمي؟ اضغط هنا

Renormalisation and off-shell improvement in lattice perturbation theory

356   0   0.0 ( 0 )
 نشر من قبل Paul Rakow
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the improvement of flavour non-singlet point and one-link lattice quark operators, which describe the quark currents and the first moment of the DIS structure functions respectively. Suitable bases of improved operators are given, and the corresponding renormalisation factors and improvement coefficients are calculated in one-loop lattice perturbation theory, using the Sheikholeslami-Wohlert (clover) action. To this order we achieve off-shell improvement by eliminating the effect of contact terms. We use massive fermions, and our calculations are done keeping all terms up to first order in the lattice spacing, for arbitrary m^2/p^2, in a general covariant gauge. We also compare clover fermions with fermions satisfying the Ginsparg-Wilson relation, and show how to remove O(a) effects off-shell in this case too, and how this is in many aspects simpler than for clover fermions. Finally, tadpole improvement is also considered.

قيم البحث

اقرأ أيضاً

We discuss the improvement of bilinear fermionic operators for Ginsparg-Wilson fermions. We present explicit formulae for improved Greens functions, which apply both on-shell and off-shell.
Lattice calculations using the framework of effective field theory have been applied to a wide range few-body and many-body systems. One of the challenges of these calculations is to remove systematic errors arising from the nonzero lattice spacing. Fortunately, the lattice improvement program pioneered by Symanzik provides a formalism for doing this. While lattice improvement has already been utilized in lattice effective field theory calculations, the effectiveness of the improvement program has not been systematically benchmarked. In this work we use lattice improvement to remove lattice errors for a one-dimensional system of bosons with zero-range interactions. We construct the improved lattice action up to next-to-next-to-leading order and verify that the remaining errors scale as the fourth power of the lattice spacing for observables involving as many as five particles. Our results provide a guide for increasing the accuracy of future calculations in lattice effective field theory with improved lattice actions.
We calculate loop contributions up to four loops to the Landau gauge gluon propagator in numerical stochastic perturbation theory. For different lattice volumes we carefully extrapolate the Euler time step to zero for the Langevin dynamics derived fr om the Wilson action. The one-loop result for the gluon propagator is compared to the infinite volume limit of standard lattice perturbation theory.
We calculate Wilson loops of various sizes up to loop order $n=20$ for lattice sizes of $L^4 (L=4, 6, 8, 12)$ using the technique of Numerical Stochastic Perturbation Theory in quenched QCD. This allows to investigate the behaviour of the perturbativ e series at high orders. We discuss three models to estimate the perturbative series: a renormalon inspired fit, a heuristic fit based on an assumed power-law singularity and boosted perturbation theory. We have found differences in the behavior of the perturbative series for smaller and larger Wilson loops at moderate $n$. A factorial growth of the coefficients could not be confirmed up to $n=20$. From Monte Carlo measured plaquette data and our perturbative result we estimate a value of the gluon condensate $<frac{alpha}{pi}GG>$.
We present an algorithm to automatically derive Feynman rules for lattice perturbation theory in background field gauge. Vertices with an arbitrary number of both background and quantum legs can be derived automatically from both gluonic and fermioni c actions. The algorithm is a generalisation of our earlier algorithm based on prior work by Luscher and Weisz. We also present techniques allowing for the parallelisation of the evaluation of the often rather complex lattice Feynman rules that should allow for efficient implementation on GPUs, but also give a significant speed-up when calculating the derivatives of Feynman diagrams with respect to external momenta.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا