ترغب بنشر مسار تعليمي؟ اضغط هنا

Determination of neutrino incoming direction in the CHOOZ experiment and Supernova explosion location by scintillator detectors

53   0   0.0 ( 0 )
 نشر من قبل Alessandro Baldini
 تاريخ النشر 1999
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The CHOOZ experiment measured the antineutrino flux at a distance of about 1 Km from two nuclear reactors in order to detect possible neutrino oscillations with squared mass differences as low as 10**-3 eV**2 for full mixing. We show that the data analysis of the electron antineutrino events, collected by our liquid scintillation detector, locates the antineutrino source within a cone of half-aperture of about 18 degrees at the 68% C.L.. We discuss the implications of this experimental result for tracking down a supernova explosion.



قيم البحث

اقرأ أيضاً

We present new results based on the entire CHOOZ data sample. We find (at 90% confidence level) no evidence for neutrino oscillations in the anti_nue disappearance mode, for the parameter region given by approximately Delta m**2 > 7 x 10**-4 eV^2 for maximum mixing, and sin**2(2 theta) = 0.10 for large Delta m**2. Lower sensitivity results, based only on the comparison of the positron spectra from the two different-distance nuclear reactors, are also presented; these are independent of the absolute normalization of the anti_nue flux, the cross section, the number of target protons and the detector efficiencies.
The recent analysis of the normalization of reactor antineutrino data, the calibration data of solar neutrino experiments using gallium targets, and the results from the neutrino oscillation experiment MiniBooNE suggest the existence of a fourth ligh t neutrino mass state with a mass of O(eV), which contributes to the electron neutrino with a sizable mixing angle. Since we know from measurements of the width of the Z0 resonance that there are only three active neutrinos, a fourth neutrino should be sterile (i.e., interact only via gravity). The corresponding fourth neutrino mass state should be visible as an additional kink in beta-decay spectra. In this work the phase II data of the Mainz Neutrino Mass Experiment have been analyzed searching for a possible contribution of a fourth light neutrino mass state. No signature of such a fourth mass state has been found and limits on the mass and the mixing of this fourth mass states are derived.
106 - Cheng-Ju Lin 2010
The last unknown neutrino mixing angle $theta_{13}$ is one of the fundamental parameters of nature; it is also a crucial parameter for determining the sensitivity of future long-baseline experiments aimed to study CP violation in the neutrino sector. Daya Bay is a reactor neutrino oscillation experiment designed to achieve a sensitivity on the value of $sin^2(2theta_{13})$ to better than 0.01 at 90% CL. The experiment consists of multiple identical detectors placed underground at different baselines to minimize systematic errors and suppress cosmogenic backgrounds. With the baseline design, the expected anti-neutrino signal at the far site is about 360 events per day and at each of the near sites is about 1500 events per day. An overview and current status of the experiment will be presented.
The experimental efforts characterizing the era of precision neutrino physics revolve around collecting high-statistics neutrino samples and attaining an excellent energy and position resolution. Next generation liquid-based neutrino detectors, such as JUNO, HyperKamiokande, etc, share the use of a large target mass, and the need of pushing light collection to the edge for maximal calorimetric information. Achieving high light collection implies considerable costs, especially when considering detector masses of several kt. A traditional strategy to maximize the effective photo-coverage with the minimum number of PMTs relies on Light Concentrators (LC), such as Winston Cones. In this paper, the authors introduce a novel concept called Occulting Light Concentrators (OLC), whereby a traditional LC gets tailored to a conventional PMT, by taking into account its single-photoelectron collection efficiency profile and thus occulting the worst performing portion of the photocathode. Thus, the OLC shape optimization takes into account not only the optical interface of the PMT, but also the maximization of the PMT detection performances. The light collection uniformity across the detector is another advantage of the OLC system. By considering the case of JUNO, we will show OLC capabilities in terms of light collection and energy resolution.
The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collaps e supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNEs ability to constrain the $ u_e$ spectral parameters of the neutrino burst will be considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا