ترغب بنشر مسار تعليمي؟ اضغط هنا

Proton-Antiproton Annihilation and Meson Spectroscopy with the Crystal Barrel

55   0   0.0 ( 0 )
 نشر من قبل Claude Amsler
 تاريخ النشر 1997
  مجال البحث
والبحث باللغة English
 تأليف Claude Amsler




اسأل ChatGPT حول البحث

This report reviews the achievements of the Crystal Barrel experiment at the Low Energy Antiproton Ring (LEAR) at CERN. During seven years of operation Crystal Barrel has collected very large statistical samples in pbarp annihilation, especially at rest and with emphasis on final states with high neutral multiplicity. The measured rates for annihilation into various two-body channels and for electromagnetic processes have been used to test simple models for the annihilation mechanism based on the quark internal structure of hadrons. From three-body annihilations three scalar mesons, a0(1450), f0(1370) and f0(1500) have been established in various decay modes. One of them, f0(1500), may be identified with the expected ground state scalar glueball.



قيم البحث

اقرأ أيضاً

Apparent channel-dependent violations of the OZI rule in nucleon-antinucleon annihilation reactions are discussed in the presence of an intrinsic strangeness component in the nucleon. Admixture of strange-antistrange quark pairs in the nucleon wave f unction enables the direct coupling to the phi-meson in the annihilation channel without violating the OZI rule. Three forms are considered in this work for the strangeness content of the proton wave function, namely, the uud cluster with a strange-antistrange sea quark component, kaon-hyperon clusters based on a simple chiral quark model, and the pentaquark picture. Nonrelativistic quark model calculations reveal that the strangeness magnetic moment and the strangeness contribution to the proton spin from the first two models are consistent with recent experimental data. For the third model, the uuds subsystem with the configurations FS[31]F[211]S[22] and FS[31]F[31]S[22] leads to negative values for the strangeness magnetic moment and the strangeness contribution to the proton spin. With effective quark line diagrams incorporating the 3P0 quark model we give estimates for the branching ratios of the proton-antiproton annihilation reactions at rest to two mesons. Results for the branching ratios of phi-meson production from atomic proton-antiproton s-wave states are for the first and third model found to be strongly channel dependent, in good agreement with measured rates.
The pentaquark component is included in the proton wave functions to study phi meson production proton-antiproton annihilation reactions. With all possible configurations of the uuds subsystem proposed for describing the strangeness spin and magnetic moment of the proton, we estimate the branching ratios of the annihilation reactions at rest proton-antiproton to phi + X (X=pi, eta, rho, omega) from atomic proton-antiproton S- and P-wave states by using effective quark line diagrams incorporating the 3P0 model. The best agreement of theoretical prediction with the experimental data is found when the pentaquark configuration of the proton wave function takes the flavor-spin symmetry, [4]_FS [22]_F [22]_S.
59 - S. Aghion , C. Amsler , A. Ariga 2017
The characteristics of low energy antiproton annihilations on nuclei (e.g. hadronization and product multiplicities) are not well known, and Monte Carlo simulation packages that use different models provide different descriptions of the annihilation events. In this study, we measured the particle multiplicities resulting from antiproton annihilations on nuclei. The results were compared with predictions obtained using different models in the simulation tools GEANT4 and FLUKA. For this study, we exposed thin targets (Cu, Ag and Au) to a very low energy antiproton beam from CERNs Antiproton Decelerator, exploiting the secondary beamline available in the AEgIS experimental zone. The antiproton annihilation products were detected using emulsion films developed at the Laboratory of High Energy Physics in Bern, where they were analysed at the automatic microscope facility. The fragment multiplicity measured in this study is in good agreement with results obtained with FLUKA simulations for both minimally and heavily ionizing particles.
We present new precision measurements of the psi(2S) total and partial widths from excitation curves obtained in antiproton-proton annihilations by Fermilab experiment E835 at the Antiproton Accumulator in the year 2000. A new technique of complement ary scans was developed to study narrow resonances with stochastically cooled antiproton beams. The technique relies on precise revolution-frequency and orbit-length measurements, while making the analysis of the excitation curve almost independent of machine lattice parameters. We study the psi(2S) meson through the processes pbar p -> e+ e- and pbar p -> J/psi + X -> e+ e- + X. We measure the width to be Gamma = 290 +- 25(sta) +- 4(sys) keV and the combination of partial widths Gamma_e+e- * Gamma_pbarp / Gamma = 579 +- 38(sta) +- 36(sys) meV, which represent the most precise measurements to date.
We describe the status of the analyses in progress on light meson spectroscopy in the KLOE experiment. We present the analyses of phi decays into f0(980)gamma and a0(980)gamma, the Dalitz plot analysis of the eta to pie+ pie- pie0 decay, the branchin g ratio measurement of eta to pie0 gamma gamma, the upper limits on Br(eta to 3 gamma) and Br(eta to pie^+ pie^-), the measurement of the ratio Br(phi to eta gamma)/Br(phi to eta gamma) and phi leptonic width measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا