ترغب بنشر مسار تعليمي؟ اضغط هنا

A Water Tank Cerenkov Detector for Very High Energy Astroparticles

163   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Extensive airshower detection is an important issue in current astrophysics endeavours. Surface arrays detectors are a common practice since they are easy to handle and have a 100% duty cycle. In this work we present an experimental study of the parameters relevant to the design of a water Cerenkov detector for high energy airshowers. This detector is conceived as part of the surface array of the Pierre Auger Project, which is expected to be sensitive to ultra high energy cosmic rays. In this paper we focus our attention in the geometry of the tank and its inner liner material, discussing pulse shapes and charge collections.



قيم البحث

اقرأ أيضاً

A water v{C}erenkov detector project, of megaton scale, to be installed in the Frejus underground site and dedicated to nucleon decay, neutrinos from supernovae, solar and atmospheric neutrinos, as well as neutrinos from a super-beam and/or a beta-be am coming from CERN, is presented and compared with competitor projects in Japan and in the USA. The performances of the European project are discussed, including the possibility to measure the mixing angle $theta_{13}$ and the CP-violating phase $delta$.
Fission events from Special Nuclear Material (SNM), such as highly enriched uranium or plutonium, can produce simultaneous emission of multiple neutrons and high energy gamma-rays. The observation of time correlations between any of these particles i s a significant indicator of the presence of fissionable material. Cosmogenic processes can also mimic these types of correlated signals. However, if the background is sufficiently low and fully characterized, significant changes in the correlated event rate in the presence of a target of interest constitutes a robust signature of the presence of SNM. Since fission emissions are isotropic, adequate sensitivity to these multiplicities requires a high efficiency detector with a large solid angle with respect to the target. Water Cerenkov detectors are a cost-effective choice when large solid angle coverage is required. In order to characterize the neutron detection performance of large-scale water Cerenkov detectors, we have designed and built a 3.5 kL water Cerenkov-based gamma-ray and neutron detector, and modeled the detector response in Geant4 [1]. We report the position-dependent neutron detection efficiency and energy response of the detector, as well as the basic characteristics of the simulation.
The construction of a new detector is proposed to extend the capabilities of ALICE in the high transverse momentum (pT) region. This Very High Momentum Particle Identification Detector (VHMPID) performs charged hadron identification on a track-by-tra ck basis in the 5 GeV/c < p < 25 GeV/c momentum range and provides ALICE with new opportunities to study parton-medium interactions at LHC energies. The VHMPID covers up to 30% of the ALICE central barrel and presents sufficient acceptance for triggered- and tagged-jet studies, allowing for the first time identified charged hadron measurements in jets. This Letter of Intent summarizes the physics motivations for such a detector as well as its layout and integration into ALICE.
The long-term prospect of building a hadron collider around the circumference of a great circle of the Moon is sketched. A Circular Collider on the Moon (CCM) of $sim$11000 km in circumference could reach a proton-proton center-of-mass collision ener gy of 14 PeV -- a thousand times higher than the Large Hadron Collider at CERN -- optimistically assuming a dipole magnetic field of 20 T. Siting and construction considerations are presented. Machine parameters, powering, and vacuum needs are explored. An injection scheme is delineated. Other unknowns are set down. Through partnerships between public and private organizations interested in establishing a permanent Moon presence, a CCM could be the (next-to-) next-to-next-generation discovery machine and a natural successor to next-generation machines, such as the proposed Future Circular Collider at CERN or a Super Proton-Proton Collider in China, and other future machines, such as a Collider in the Sea, in the Gulf of Mexico. A CCM would serve as an important stepping stone towards a Planck-scale collider sited in our Solar System.
110 - B.J. King 2000
An overview is given of the potential for neutrino physics studies through parasitic use of the intense high energy neutrino beams that would be produced at future many-TeV muon colliders. Neutrino experiments clearly cannot compete with the collider physics. Except at the very highest energy muon colliders, the main thrust of the neutrino physics program would be to improve on the measurements from preceding neutrino experiments at lower energy muon colliders, particularly in the fields of B physics, quark mixing and CP violation. Muon colliders at the 10 TeV energy scale might already produce of order 10^8 B hadrons per year in a favorable and unique enough experimental environment to have some analytical capabilities beyond any of the currently operating or proposed B factories. The most important of the quark mixing measurements at these energies might well be the improved measurements of the important CKM matrix elements |V_ub| and |V_cb| and, possibly, the first measurements of |V_td| in the process of flavor changing neutral current interactions involving a top quark loop. Muon colliders at the highest center-of-mass energies that have been conjectured, 100--1000 TeV, would produce neutrino beams for neutrino-nucleon interaction experiments with maximum center-of-mass energies from 300--1000 GeV. Such energies are comparable to the 314 GeV center-of-mass energy for electron-proton scattering at the HERA collider, but the luminosity would would be several orders of magnitude larger. This would potentially open up the possibility for high statistics studies of any exotic particles, such as leptoquarks, that might have been previously discovered at these energy scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا