ﻻ يوجد ملخص باللغة العربية
This report summarizes the flavor tagging techniques developed at the CDF and D{O}experiments. Flavor tagging involves identification of the B meson flavor atproduction, whether its constituent is a quark or an anti-quark. It is crucial for measuring the oscillation frequency of neutral B mesons, both in the B^0 and B_S system. The two experiments have developed their unique approaches to flavor tagging, using neural networks, and likelihood methods to disentangle tracks from $b$ decays from other tracks. This report discusses these techniques and the measurement of B^0 mixing, as a means to calibrate the taggers.
We report on the first calibration of the standard Belle II $B$-flavor tagger using the full data set collected at the $Upsilon(4{rm S})$ resonance in 2019 with the Belle II detector at the SuperKEKB collider, corresponding to 8.7 fb$^{-1}$ of integr
Processes involving flavor changing neutral currents (FCNC) provide excellent signatures with which to search for evidence of new physics. They have very small branching fractions in the Standard Model since they are highly suppressed by Glashow-Ilio
The CDF and D0 experiments at the Tevatron ppbar collider have pioneered and established the role of flavor physics in hadron collisions. A broad program is now at its full maturity. We report on three new results sensitive to physics beyond the stan
We describe a flavor tagging algorithm used in measurements of the CP violation parameter sin2phi_1 at the Belle experiment. Efficiencies and wrong tag fractions are evaluated using flavor-specific B meson decays into hadronic and semileptonic modes.
We present results from CDF and DO on $Wgamma$ and $Zgamma$ productions in $pbar{p}$ collisions at $sqrt{s}=1.8~{rm TeV}.$ The goal of the analyses is to test the non-abelian self-couplings of the $W$, $Z$ and photon, one of the most direct consequen