ترغب بنشر مسار تعليمي؟ اضغط هنا

Long Baseline Neutrino Physics in the U.S

67   0   0.0 ( 0 )
 نشر من قبل Sacha E. Kopp
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English
 تأليف Sacha E. Kopp




اسأل ChatGPT حول البحث

Long baseline neutrino oscillation physics in the U.S. is centered at the Fermi National Accelerator Laboratory (FNAL), in particular at the Neutrinos at the Main Injector (NuMI) beamline commissioned in 2004-2005. Already, the MINOS experiment has published its first results confirming the disappearance of $ u_mu$s across a 735 km baseline. The forthcoming NO$ u$A experiment will search for the transition $ u_muto u_e$ and use this transition to understand the mass heirarchy of neutrinos. These, as well as other conceptual ideas for future experiments using the NuMI beam, will be discussed. The turn-on of the NuMI facility has been positive, with over 310 kW beam power achieved. Plans for increasing the beam intensity once the Main Injector accelerator is fully-dedicated to the neutrino program will be presented.

قيم البحث

اقرأ أيضاً

The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass hierarchy to a precision of 5$sigma$, for all $delta_{mathrm{CP}}$ values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3$sigma$ (5$sigma$) after an exposure of 5 (10) years, for 50% of all $delta_{mathrm{CP}}$ values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to $sin^{2} 2theta_{13}$ to current reactor experiments.
The results obtained by several experiments on atmospheric neutrino oscillations are summarized and discussed. Then the results obtained by different long baseline neutrino experiments are considered. Finally conclusions and perspectives are made.
In early 2010, the Long-Baseline Neutrino Experiment (LBNE) science collaboration initiated a study to investigate the physics potential of the experiment with a broad set of different beam, near- and far-detector configurations. Nine initial topics were identified as scientific areas that motivate construction of a long-baseline neutrino experiment with a very large far detector. We summarize the scientific justification for each topic and the estimated performance for a set of far detector reference configurations. We report also on a study of optimized beam parameters and the physics capability of proposed Near Detector configurations. This document was presented to the collaboration in fall 2010 and updated with minor modifications in early 2011.
Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokan de is the study of $CP$ asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this paper, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis uses the framework and systematic uncertainties derived from the ongoing T2K experiment. With a total exposure of 7.5 MW $times$ 10$^7$ sec integrated proton beam power (corresponding to $1.56times10^{22}$ protons on target with a 30 GeV proton beam) to a $2.5$-degree off-axis neutrino beam, it is expected that the leptonic $CP$ phase $delta_{CP}$ can be determined to better than 19 degrees for all possible values of $delta_{CP}$, and $CP$ violation can be established with a statistical significance of more than $3,sigma$ ($5,sigma$) for $76%$ ($58%$) of the $delta_{CP}$ parameter space. Using both $ u_e$ appearance and $ u_mu$ disappearance data, the expected 1$sigma$ uncertainty of $sin^2theta_{23}$ is 0.015(0.006) for $sin^2theta_{23}=0.5(0.45)$.
The p-value or statistical significance of a CP conservation null hypothesis test is determined from counting electron neutrino and antineutrino appearance oscillation events. The statistical estimates include cases with background events and differe nt data sample sizes, graphical plots to interpret results and methods to combine p-values from different experiments. These estimates are useful for optimizing the search for CP violation with different amounts of neutrino and antineutrino beam running, comparing results from different experiments and for simple cross checks of more elaborate statistical estimates that use likelihood fitting of neutrino parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا