ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam

111   0   0.0 ( 0 )
 نشر من قبل Jeffrey Nelson
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This letter reports results from the MINOS experiment based on its initial exposure to neutrinos from the Fermilab NuMI beam. The rate and energy spectra of charged current muon neutrino interactions are compared in two detectors located along the beam axis at distances of 1 km and 735 km. With 1.27 x 10^{20} 120 GeV protons incident on the NuMI target, 215 events with energies below 30 GeV are observed at the Far Detector, compared to an expectation of 336 pm 14.4 events. The data are consistent with muon neutrino disappearance via oscillation with |Delta m^2_{23}| = 2.74^{+0.44}_{-0.26} x 10^{-3} eV^2/c^4 and sin^2(2theta_{23}) > 0.87 (at 60% C.L.).


قيم البحث

اقرأ أيضاً

150 - William C. Louis 2018
The MINOS/MINOS+ experiment has recently reported stringent limits on $ u_mu$ disappearance that appear to rule out the 3+1 sterile neutrino model. However, in this paper we wish to point out problems associated with the MINOS/MINOS+ analysis. In par ticular, we find that MINOS/MINOS+ has either underestimated their systematic errors and/or has obtained evidence for physics beyond the 3-neutrino paradigm. Either case would invalidate the limits on $ u_mu$ disappearance.
393 - MINOS Collaboration 2008
This letter reports new results from the MINOS experiment based on a two-year exposure to muon neutrinos from the Fermilab NuMI beam. Our data are consistent with quantum mechanical oscillations of neutrino flavor with mass splitting $|Delta m^2|=(2. 43pm 0.13)times10^{-3}$ eV$^2$ (68% confidence level) and mixing angle $sin^2(2theta)>0.90$ (90% confidence level). Our data disfavor two alternative explanations for the disappearance of neutrinos in flight, namely neutrino decays into lighter particles and quantum decoherence of neutrinos, at the 3.7 and 5.7 standard deviation levels, respectively.
We report constraints on antineutrino oscillation parameters that were obtained by using the two MINOS detectors to measure the 7% muon antineutrino component of the NuMI neutrino beam. In the Far Detector, we select 130 events in the charged-current muon antineutrino sample, compared to a prediction of 136.4 +/- 11.7(stat) ^{+10.2}_{-8.9}(syst) events under the assumption |dm2bar|=2.32x10^-3 eV^2, snthetabar=1.0. Assuming no oscillations occur at the Near Detector baseline, a fit to the two-flavor oscillation approximation constrains |dm2bar|<3.37x10^-3 eV^2 at the 90% confidence level with snthetabar=1.0.
The T2K collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Su per-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to $3.01 times 10^{20}$ protons on target. In the absence of neutrino oscillations, $205 pm 17$ (syst.) events are expected to be detected and only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum assuming three neutrino flavors, normal mass hierarchy and $theta_{23}leq pi/4$ yields a best-fit mixing angle $sin^2(2theta_{23})=1.000$ and mass splitting $|Delta m^2_{32}| =2.44 times 10^{-3}$ eV$^2$/c$^4$. If $theta_{23}geq pi/4$ is assumed, the best-fit mixing angle changes to $sin^2(2theta_{23})=0.999$ and the mass splitting remains unchanged.
We report a measurement of muon-neutrino disappearance in the T2K experiment. The 295-km muon-neutrino beam from Tokai to Kamioka is the first implementation of the off-axis technique in a long-baseline neutrino oscillation experiment. With data corr esponding to 1.43 10**20 protons on target, we observe 31 fully-contained single muon-like ring events in Super-Kamiokande, compared with an expectation of 104 +- 14 (syst) events without neutrino oscillations. The best-fit point for two-flavor nu_mu -> nu_tau oscillations is sin**2(2 theta_23) = 0.98 and |Delta m**2_32| = 2.65 10**-3 eV**2. The boundary of the 90 % confidence region includes the points (sin**2(2 theta_23),|Delta m**2_32|) = (1.0, 3.1 10**-3 eV**2), (0.84, 2.65 10**-3 eV**2) and (1.0, 2.2 10**-3 eV**2).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا