ترغب بنشر مسار تعليمي؟ اضغط هنا

Prospects for e+e- physics at Frascati between the phi and the psi

39   0   0.0 ( 0 )
 نشر من قبل Cesare Bini
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed study, done in the framework of the INFN 2006 Roadmap, of the prospects for e+e- physics at the Frascati National Laboratories. The physics case for an e+e- collider running at high luminosity at the phi resonance energy and also reaching a maximum center of mass energy of 2.5 GeV is discussed, together with the specific aspects of a very high luminosity tau-charm factory. Subjects connected to Kaon decay physics are not discussed here, being part of another INFN Roadmap working group. The significance of the project and the impact on INFN are also discussed. All the documentation related to the activities of the working group can be found in http://www.roma1.infn.it/people/bini/roadmap.html.

قيم البحث

اقرأ أيضاً

Using a data sample of $448.1times10^6$ $psi(3686)$ events collected at $sqrt{s}=$ 3.686 GeV with the BESIII detector at the BEPCII, we search for the rare decay $J/psi to phi e^+ e^-$ via $psi(3686) to pi^+pi^- J/psi $. No signal events are observed and the upper limit on the branching fraction is set to be $mathcal{B}(J/psi to phi e^+ e^-) < 1.2 times 10^{-7}$ at the 90% confidence level, which is still about one order of magnitude higher than the Standard Model prediction.
This paper intends to collect available data on searches for scalar resonances at LHC. It is suggested that, in the absence of SUSY, the most compelling picture is the composite framework, with the idea that the lightest particles are composite scala rs of the pseudo-Nambu-Goldstone type, emerging from a broken symmetry at a higher scale, the h(125) boson being one of them. Searches in two-photons, Z-photon, ZZ into 4 leptons, top, h and W pairs are reviewed. A recent search based on lepton tagging from a spectator W/Z is also discussed. Aside from the already well-known scalar observed by CMS and LEP2 at 96 GeV, I discuss the evidence and the interpretation for a possible resonance observed in ZZ around 700 GeV by CMS and ATLAS and some evidence for a CP-odd scalar at ~400 GeV. Future searches at HL-LHC and at $e^+e^-$ colliders are briefly sketched.
This paper summarizes the physics potential of the CLIC high-energy e+e- linear collider. It provides input to the Snowmass 2013 process for the energy-frontier working groups on The Higgs Boson (HE1), Precision Study of Electroweak Interactions (HE2 ), Fully Understanding the Top Quark (HE3), as well as The Path Beyond the Standard Model -- New Particles, Forces, and Dimensions (HE4). It is accompanied by a paper describing the CLIC accelerator study, submitted to the Frontier Capabilities group of the Snowmass process.
Using data samples collected at center-of-mass energies $sqrt{s} = 4.23$, 4.26, and 4.36 GeV with the BESIII detector operating at the BEPCII storage ring, we search for the production of the charmoniumlike state $Y(4140)$ through a radiative transit ion followed by its decay to $phi J/psi$. No significant signal is observed and upper limits on $sigma[e^{+} e^{-} rightarrow gamma Y(4140)] cdot mathcal{B}(Y(4140)rightarrow phi J/psi)$ at the $90%$ confidence level are estimated as 0.35, 0.28, and 0.33 pb at $sqrt{s} = 4.23$, 4.26, and 4.36 GeV, respectively.
The Compact Linear Collider, CLIC, is a proposed e$^+$e$^-$ collider at the TeV scale whose physics potential ranges from high-precision measurements to extensive direct sensitivity to physics beyond the Standard Model. This document summarises the p hysics potential of CLIC, obtained in detailed studies, many based on full simulation of the CLIC detector. CLIC covers one order of magnitude of centre-of-mass energies from 350 GeV to 3 TeV, giving access to large event samples for a variety of SM processes, many of them for the first time in e$^+$e$^-$ collisions or for the first time at all. The high collision energy combined with the large luminosity and clean environment of the e$^+$e$^-$ collisions enables the measurement of the properties of Standard Model particles, such as the Higgs boson and the top quark, with unparalleled precision. CLIC might also discover indirect effects of very heavy new physics by probing the parameters of the Standard Model Effective Field Theory with an unprecedented level of precision. The direct and indirect reach of CLIC to physics beyond the Standard Model significantly exceeds that of the HL-LHC. This includes new particles detected in challenging non-standard signatures. With this physics programme, CLIC will decisively advance our knowledge relating to the open questions of particle physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا