ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-Flavor Decomposition in Polarized Semi-Inclusive Deep Inelastic Scattering Experiments at Jefferson Lab

77   0   0.0 ( 0 )
 نشر من قبل Xiaodong Jiang
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English
 تأليف Xiaodong Jiang




اسأل ChatGPT حول البحث

A Jefferson Lab experiment proposal was discussed in this talk. The experiment is designed to measure the beam-target double-spin asymmetries $A_{1n}^h$ in semi-inclusive deep-inelastic $vec n({vec e}, e^prime pi^+)X$ and $vec n({vec e}, e^prime pi^-)X$ reactions on a longitudinally polarized $^3$He target. In addition to $A_{1n}^h$, the flavor non-singlet combination $A_{1n}^{pi^+ - pi^-}$, in which the gluons do not contribute, will be determined with high precision to extract $Delta d_v(x)$ independent of the knowledge of the fragmentation functions. The data will also impose strong constraints on quark and gluon polarizations through a global NLO QCD fit.

قيم البحث

اقرأ أيضاً

A comprehensive set of azimuthal single-spin and double-spin asymmetries in semi-inclusive leptoproduction of pions, charged kaons, protons, and antiprotons from transversely polarized protons is presented. These asymmetries include the previously pu blished HERMES results on Collins and Sivers asymmetries, the analysis of which has been extended to include protons and antiprotons and also to an extraction in a three-dimensional kinematic binning and enlarged phase space. They are complemented by corresponding results for the remaining four single-spin and four double-spin asymmetries allowed in the one-photon-exchange approximation of the semi-inclusive deep-inelastic scattering process for target-polarization orientation perpendicular to the direction of the incoming lepton beam. Among those results, significant non-vanishing $cos{phi-phi_S}$ modulations provide evidence for a sizable worm-gear (II) distribution, $g_{1T}$. Most of the other modulations are found to be consistent with zero with the notable exception of large $sin{phi_S}$ modulations for charged pions and positive kaons.
Experiment E04-113 at Jefferson Lab Hall C plans to measure the beam-target double-spin asymmetries in semi-inclusive deep-inelastic $vec p(e, e^prime h)X$ and $vec d(e, e^prime h)X$ reactions ($h=pi^+, pi^-, K^+$ or$K^-$) with a 6 GeV polarized elec tron beam and longitudinally polarized NH$_3$ and LiD targets. The high statistic data will allow a spin-flavor decomposition in the region of $x=0.12 sim 0.41$ at $Q^2=1.21sim 3.14$ GeV$^2$. Especially, leading-order and next-to-leading order spin-flavor decomposition of $Delta u_v$, $Delta d_v$ and $Delta bar{u} - Delta bar{d}$ will be extracted based on the measurement of the combined asymmetries $A_{1N}^{pi^+ - pi^-}$. The possible flavor asymmetry of the polarized sea will be addressed in this experiment.
256 - M. Murphy , H. Dai , L. Gu 2019
The E12-14-012 experiment performed at Jefferson Lab Hall A has collected inclusive electron-scattering data for different targets at the kinematics corresponding to beam energy 2.222 GeV and scattering angle 15.54 deg. Here we present a comprehensiv e analysis of the collected data and compare the double-differential cross sections for inclusive scattering of electrons, extracted using solid targets (aluminum, carbon, and titanium) and a closed argon-gas cell. The data extend over broad range of energy transfer, where quasielastic interaction, Delta-resonance excitation, and inelastic scattering yield contributions to the cross section. The double-differential cross sections are reported with high precision (~3%) for all targets over the covered kinematic range.
We derive mass corrections for semi-inclusive deep inelastic scattering of leptons from nucleons using a collinear factorization framework which incorporates the initial state mass of the target nucleon and the final state mass of the produced hadron . The formalism is constructed specifically to ensure that physical kinematic thresholds for the semi-inclusive process are explicitly respected. A systematic study of the kinematic dependencies of the mass corrections to semi-inclusive cross sections reveals that these are even larger than for inclusive structure functions, especially at very small and very large hadron momentum fractions. The hadron mass corrections compete with the experimental uncertainties at kinematics typical of current facilities, and will be important to efforts at extracting parton distributions or fragmentation functions from semi-inclusive processes at intermediate energies.
The spin-dependent cross sections for semi-inclusive lepton-nucleon scattering are derived in the framework of collinear factorization, including the effects of masses of the target and produced hadron at finite momentum transfer squared Q^2. At lead ing order the cross sections factorize into products of parton distribution and fragmentation functions evaluated in terms of new, mass-dependent scaling variables. The size of the hadron mass corrections is estimated at kinematics relevant for future semi-inclusive deep-inelastic scattering experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا