ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Measurement of the Form Factors and First Search for CP Violation in the Decay of Lambda_c^+ to Lambda e^+ nu_e

122   0   0.0 ( 0 )
 نشر من قبل Pam Morehouse
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the CLEO detector at the Cornell Electron Storage Ring we have studied the angular distributions in the decay Lambda_c^+ to Lambda e+ nu_e. By performing a four-dimensional maximum likelihood fit, we extract the form factor ratio, R = f_2/f_1, and the pole mass, which determines the shape of the form factors, M_{pole}. They are found to be -0.31 +/- 0.05_{stat} +/- 0.04_{syst}$ and (2.13 +/- 0.07_{stat} +/- 0.10_{syst}) GeV/c^2, respectively. These results correspond to the following value of the decay asymmetry parameter: alpha_{Lambda_c} = -0.85 +/- {0.03}_{stat} +/- 0.02_{sys}, for <q^2> = 0.67 (GeV/c^2)^2. We search for CP violation in the angular distributions of the decay and find no evidence for CP violation, obtaining anasymmetry ratio; A_{Lambda_{c}} = (alpha_{Lambda_c} + alpha_{bar{Lambda}_c}) / (alpha_{Lambda_c} - alpha_{bar{Lambda}_c}) = 0.01 +/- 0.03_{stat} +/- 0.01_{sys} +/- 0.02_{A_{Lambda}}, where the third error is from the uncertainty in the world average of the CP violating parameter, A_{Lambda}, for Lambda decay to p pi^-. All results presented in this paper are preliminary.

قيم البحث

اقرأ أيضاً

Using the entire CLEO-c psi(3770) to DDbar event sample, corresponding to an integrated luminosity of 818 pb^-1 and approximately 5.4 x 10^6 DDbar events, we measure the form factors for the decays D0 to rho- e+ nu_e and D+ to rho0 e+ nu_e for the fi rst time and the branching fractions with improved precision. A four-dimensional unbinned maximum likelihood fit determines the form factor ratios to be: V(0)/A_1(0) = 1.48 +- 0.15 +- 0.05 and A_2(0)/A_1(0)= 0.83 +- 0.11 +- 0.04. Assuming CKM unitarity, the known D meson lifetimes and our measured branching fractions we obtain the form factor normalizations A_1(0), A_2(0), and V(0). We also present a measurement of the branching fraction for D^+ to omega e^+ nu_e with improved precision.
Using 2.92 fb$^{-1}$ of electron-positron annihilation data collected at a center-of-mass energy of $sqrt{s}= 3.773$ GeV with the BESIII detector, we present an improved measurement of the branching fraction $mathcal{B}(D^+ to omega e^+ u_{e}) = (1. 63pm0.11pm0.08)times 10^{-3}$. The parameters defining the corresponding hadronic form factor ratios at zero momentum transfer are determined for the first time, we measure them to be $r_V = 1.24pm0.09pm0.06$ and $r_2 = 1.06pm0.15 pm 0.05$. The first and second uncertainties are statistical and systematic, respectively. We also search for the decay $D^+ to phi e^+ u_{e}$. An improved upper limit $mathcal{B}(D^+ to phi e^+ u_{e}) < 1.3 times 10^{-5}$ is set at 90% confidence level.
We present the first lattice-QCD calculation of the form factors governing the charm-baryon semileptonic decays $Lambda_c to Lambda^*(1520)ell^+ u_ell$. As in our previous calculation of the $Lambda_b to Lambda^*(1520)$ form factors, we work in the $ Lambda^*(1520)$ rest frame, but here we use four different heavy-baryon momenta instead of just two. Because of the lower mass of the $Lambda_c$, the moderately-sized momenta used here are sufficient to determine the form factors in the full kinematic range of the semileptonic decay. We also update the analysis of our lattice results for the $Lambda_b to Lambda^*(1520)$ and $Lambda_b to Lambda_c^*(2595,2625)$ form factors by imposing exact relations among the different form factors at zero recoil that follow from rotational symmetry. Imposing these relations ensures the correct behavior of the angular observables near the endpoint.
A measurement of the time-dependent CP-violating asymmetry in $B_s^0rightarrowphiphi$ decays is presented. Using a sample of proton-proton collision data corresponding to an integrated luminosity of $5.0$fb$^{-1}$ collected by the $mbox{LHCb}$ experi ment at centre-of-mass energies $sqrt{s} = 7$ TeV in 2011, 8 TeV in 2012 and 13 TeV in 2015 and 2016, a signal yield of around 9000 $B_s^0rightarrowphiphi$ decays is obtained. The CP-violating phase $phi_s^{sbar{s}s}$ is measured to be $-0.073 pm 0.115$(stat)$pm 0.027$(syst) rad, under the assumption it is independent on the helicity of the $phiphi$ decay. In addition, the CP-violating phases of the transverse polarisations under the assumption of CP conservation of the longitudinal phase are measured. The helicity-independent direct CP-violation parameter is also measured, and is found to be $|lambda|=0.99 pm 0.05 $(stat)$ pm 0.01 $(syst). In addition, $T$-odd triple-product asymmetries are measured. The results obtained are consistent with the hypothesis of CP conservation in $brightarrowbar{s}sbar{s}$ transitions. Finally, a limit on the branching fraction of the $B^0rightarrow phiphi$ decay is determined to be $mathcal{B}(B^0rightarrow phiphi)<2.7times 10^{-8}$ at 90% confidence level.
The decay K- -> pi0 e- nu is studied using in-flight decays detected with the ISTRA+ spectrometer. About 920K events are collected for the analysis. The lambda+ slope parameter of the decay form-factor f+(t) in the linear approximation (average slope ) is measured: lambda+(lin)= 0.02774 +- 0.00047(stat) +- 0.00032(syst). The quadratic contribution to the form-factor was estimated to be lambda+ = 0.00084 +- 0.00027(stat) +- 0.00031(syst). The linear slope, which has a meaning of df+(t)/dt|_{t=0} for this fit, is lambda+ = 0.02324 +- 0.00152(stat) +- 0.00032(syst). The limits on possible tensor and scalar couplings are derived: f_{T}/f_{+}(0)=-0.012 +- 0.021(stat) +- 0.011$(syst), f_{S}/f_{+}(0)=-0.0037^{+0.0066}_{-0.0056}(stat) +- 0.0041(syst).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا