The neutron background at the underground laboratory at Boulby - a site for several dark matter experiments - is discussed. Special emphasis is put on the neutron background produced by cosmic-ray muons. The most rece
The NAIAD experiment (NaI Advanced Detector) for WIMP dark matter searches at Boulby mine (UK) is described. The detector consists of an array of encapsulated and unencapsulated NaI(Tl) crystals with high light yield. Six crystals are collecting data
at present. Data accumulated by four of them (10.6 kg x year exposure) have been used to set upper limits on the WIMP-nucleon spin-independent and WIMP-proton spin-dependent cross-sections. Pulse shape analysis has been applied to discriminate between nuclear recoils, as may be caused by WIMP interactions, and electron recoils due to gamma background. Various calibrations of crystals are presented.
The Boulby Underground Germanium Suite (BUGS) comprises three low background, high-purity germanium detectors operating in the Boulby Underground Laboratory, located 1.1 km underground in the north-east of England, UK. BUGS utilises three types of de
tector to facilitate a high-sensitivity, high-throughput radioassay programme to support the development of rare-event search experiments. A Broad Energy Germanium (BEGe) detector delivers sensitivity to low-energy gamma-rays such as those emitted by 210Pb and 234Th. A Small Anode Germanium (SAGe) well-type detector is employed for efficient screening of small samples. Finally, a standard p-type coaxial detector provides fast screening of standard samples. This paper presents the steps used to characterise the performance of these detectors for a variety of sample geometries, including the corrections applied to account for cascade summing effects. For low-density materials, BUGS is able to radio-assay to specific activities down to 3.6 mBq/kg for 234Th and 6.6 mBq/kg for 210Pb both of which have uncovered some significant equilibrium breaks in the 238U chain. In denser materials, where gamma-ray self-absorption increases, sensitivity is demonstrated to specific activities of 0.9 mBq/kg for 226Ra, 1.1 mBq/kg for 228 Ra, 0.3 mBq/kg for 224Ra, and 8.6 mBq/kg for 40K with all upper limits at a 90% confidence level. These meet the requirements of most screening campaigns presently under way for rare-event search experiments, such as the LUX-ZEPLIN (LZ) dark matter experiment. We also highlight the ability of the BEGe detector to probe the X-ray fluorescence region which can be important to identify the presence of radioisotopes associated with neutron production; this is of particular relevance in experiments sensitive to nuclear recoils.
Increasing the distance from which an antineutrino detector is capable of monitoring the operation of a registered reactor, or discovering a clandestine reactor, strengthens the Non-Proliferation of Nuclear Weapons Treaty. This report presents calcul
ations of reactor antineutrino interactions, from quasi-elastic neutrino-proton scattering and elastic neutrino-electron scattering, in a water-based detector operated >10 km from a commercial power reactor. It separately calculates signal from the proximal reactor and background from all other registered reactors. The main results are interaction rates and kinetic energy distributions of charged leptons scattered from quasi-elastic and elastic processes. Comparing signal and background distributions evaluates reactor monitoring capability. Scaling the results to detectors of different sizes, target media, and standoff distances is straightforward. Calculations are for two examples of a commercial reactor (P_th~3 GW) operating nearby (L~20 km) an underground facility capable of hosting a detector (~1 kT H2O) project. These reactor-site combinations are Perry-Morton on the southern shore of Lake Erie in the U.S. and Hartlepool-Boulby on the western shore of the North Sea in U.K.. The signal from the proximal reactor is about five times greater at the Morton site than at the Boulby site due to shorter reactor-site separation distance, larger reactor thermal power, and greater neutrino oscillation survival probability. In terms of absolute interaction rate, background from all other reactors is larger at Morton than at Boulby. However, the fraction of the total rate is smaller at Morton than at Boulby. Moreover, the Hartlepool power plant has two cores whereas the Perry plant has a single core. The Boulby site, therefore, offers an opportunity for demonstrating remote reactor monitoring under more stringent conditions than does the Morton site.
We present the first measurements of the muon-induced neutron flux at the Boulby Underground Laboratory. The experiment was carried out with an 0.73 tonne liquid scintillator that also served as an anticoincidence system for the ZEPLIN-II direct dark
matter search. The experimental method exploited the delayed coincidences between high-energy muon signals and gamma-rays from radiative neutron capture on hydrogen or other elements. The muon-induced neutron rate, defined as the average number of detected neutrons per detected muon, was measured as $0.079 pm 0.003$ (stat.) neutrons/muon using neutron-capture signals above 0.55 MeV in a time window of 40-190 $mu$s after the muon trigger. Accurate Monte Carlo simulations of the neutron production, transport and detection in a precisely modeled laboratory and experimental setup using the GEANT4 toolkit gave a result 1.8 times higher than the measured value. The difference greatly exceeds all statistical and systematic uncertainties. As the vast majority of neutrons detected in the current setup were produced in lead we evaluated from our measurements the neutron yield in lead as $(1.31 pm 0.06) times 10^{-3}$ neutrons/muon/(g/cm$^2$) for a mean muon energy of about 260 GeV.
Measurements of cosmic-ray muon rates and energy deposition spectra in a one tonne liquid scintillator detector at 1070 metres vertical depth in the Boulby underground laboratory are discussed. In addition, the simulations used to model the detector
are described. The results of the simulations are compared to the experimental data and conclusions given. The muon flux in the laboratory is found to be (4.09+/-0.15)x10^-8 /cm^2/s.