ترغب بنشر مسار تعليمي؟ اضغط هنا

Differential cross section measurement of eta photoproduction on the proton from threshold to 1100 MeV

48   0   0.0 ( 0 )
 نشر من قبل Rebreyend
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The differential cross section for the reaction p(gamma, eta p) has been measured from threshold to 1100 MeV photon laboratory energy. For the first time, the region of the S11(1535) resonance is fully covered in a photoproduction experiment and allows a precise extraction of its parameters at the photon point. Above 1000 MeV, S-wave dominance vanishes while a P-wave contribution is observed whose nature will have to be clarified. These high precision data together with the already measured beam asymmetry data will provide stringent constraints on the extraction of new couplings of baryon resonances to the eta meson.

قيم البحث

اقرأ أيضاً

Beam asymmetry and differential cross section for the reaction gamma+p->eta+p were measured from production threshold to 1500 MeV photon laboratory energy. The two dominant neutral decay modes of the eta meson, eta->2g and eta->3pi0, were analyzed. T he full set of measurements is in good agreement with previously published results. Our data were compared with three models. They all fit satisfactorily the results but their respective resonance contributions are quite different. The possible photoexcitation of a narrow state N(1670) was investigated and no evidence was found.
The total cross section for gamma p -> 3pi0 p has been measured for the first time from threshold to 1.4 GeV using the tagged photon beam of the Mainz Microtron. The equipment utilized the Crystal Ball multiphoton spectrometer, the TAPS forward detec tor and a particle identification detector. The gamma p -> 3pi0 p total cross section has two broad enhancements at sqrt{s}~1.5 GeV and 1.7 GeV. We obtained the ratio of the total cross sections gamma p -> 3pi0 p to gamma p -> eta p equal to 0.014 pm 0.001 at sqrt{s}~1.5 GeV.
We describe a double-scattering experiment with a novel tagged neutron beam to measure differential cross sections for np back-scattering to better than 2% absolute precision. The measurement focuses on angles and energies where the cross section mag nitude and angle-dependence constrain the charged pion-nucleon coupling constant, but existing data show serious discrepancies among themselves and with energy-dependent partial wave analyses (PWA). The present results are in good accord with the PWA, but deviate systematically from other recent measurements.
73 - M. Yuly 2017
The $^{12}$C(n, 2n)$^{11}$C cross section was measured from just below threshold to 26.5 MeV using the Pelletron accelerator at Ohio University. Monoenergetic neutrons, produced via the $^3$H(d,n)$^4$He reaction, were allowed to strike targets of pol yethylene and graphite. Activation of both targets was measured by counting positron annihilations resulting from the $beta^+$ decay of $^{11}$C. Annihilation gamma rays were detected, both in coincidence and singly, using back-to-back NaI detectors. The incident neutron flux was determined indirectly via $^{1}$H(n,p) protons elastically scattered from the polyethylene target. Previous measurements fall into upper and lower bands, the results of the present measurement are consistent with the upper band.
Study of the elastic scattering can produce a rich information on the dynamics of the strong interaction. The EPECUR collaboration is aimed at the research of baryon resonances in the second resonance region via pion-proton elastic scattering and kao n-lambda production. The experiment features high statistics and better than 1 MeV resolution in the invariant mass thus allowing searches for narrow resonances with the coupling to the pi p channel as low as 5%. The experiment is of formation type, i.e. the resonances are produced in s-channel and the scan over the invariant mass is done by the variation of the incident pion momentum which is measured with the accuracy of 0.1% with a set of 1 mm pitch proportional chambers located in the first focus of the beam line. The reaction is identified by a magnetless spectrometer based on wire drift chambers with a hexagonal structure. Background suppression in this case depends on the angular resolution, so the amount of matter in the chambers and the setup was minimized to reduce multiple scattering. The measurements started in 2009 with the setup optimized for elastic pion-proton scattering. With 3 billions of triggers already recorded the differential cross section of the elastic pi p-scattering on a liquid hydrogen target in the region of the diffraction minimum is measured with statistical accuracy about 1% in 1 MeV steps in terms of the invariant mass. The paper covers the experimental setup, current status and some preliminary results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا