ﻻ يوجد ملخص باللغة العربية
According to classical electrodynamics, sunlight that is passed through an iron layer can be detected with the naked eye only if the thickness of the layer is less than 170nm. However, in an old experiment, August Kundt was able to see the sunlight with the naked eye even when it had passed an iron layer with thickness greater than 200nm. To explain this observation, we propose a second kind of light which was introduced in a different context by Abdus Salam. A tabletop experiment can verify this possibility.
Several years ago, I suggested a quantum field theory which has many attractive features. (1) It can explain the quantization of electric charge. (2) It describes symmetrized Maxwell equations. (3) It is manifestly covariant. (4) It describes local f
We introduce the extended Freudenthal-Rosenfeld-Tits magic square based on six algebras: the reals $mathbb{R}$, complexes $mathbb{C}$, ternions $mathbb{T}$, quaternions $mathbb{H}$, sextonions $mathbb{S}$ and octonions $mathbb{O}$. The ternionic and
Using samples of 102 million $Upsilon(1S)$ and 158 million $Upsilon(2S)$ events collected with the Belle detector, we study exclusive hadronic decays of these two bottomonium resonances to the three-body final states $phi K^+ K^-$, $omega pi^+ pi^-$
The recent observations of the purely leptonic decay $Ds to mu^+ u_{mu}$ and $tau^+ u_{tau}$ at CLEO-c and $B$ factory may allow a possible contribution from a charged Higgs boson. One such measurement of the decay constant $f_{D_s}$ differs from th
Electron-positron angular correlations were measured for the isovector magnetic dipole 17.6 MeV state ($J^pi=1^+$, $T=1$) $rightarrow$ ground state ($J^pi=0^+$, $T=0$) and the isoscalar magnetic dipole 18.15 MeV ($J^pi=1^+$, $T=0$) state $rightarrow$