ﻻ يوجد ملخص باللغة العربية
We determine the CKM matrix element |Vcb| using a sample of 3.33 million BBbar events in the CLEO detector at CESR. We determine the yield of reconstructed B --> D*+ l nu decays as a function of w = v_B . v_D*, and from this we obtain the differential decay rate dGamma/dw. By extrapolating the differential decay rate to w=1, the kinematic point at which the D* is at rest relative to the B, we extract the product |Vcb| F(1), where F(1) is the form factor at w=1 and is predicted accurately by theory. We find |Vcb| F(1) = 0.0424 +- 0.0018(stat.) +- 0.0019(syst.). We also integrate the differential decay rate over w to obtain B(B --> D*+ l nu) = (5.66 +- 0.29 +- 0.33)%. All results are preliminary.
This paper describes a determination of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{cb}|$ using the decay $B^0to D^{*-}ell^+ u_ell$. We perform a combined measurement of this quantity and of the form factors $rho^2$, $R_1(1)$, and $R_2(1)$ whic
B --> rho l nu decay is analyzed in the effective theory of heavy quark with infinite mass limit. The matrix element relevant to the heavy to light vector meson semileptonic decays is parametrized by a set of four heavy flavor-spin independent univer
In the heavy quark effective field theory of QCD, we analyze the order 1/m_Q contributions to heavy to light vector decays. Light cone sum rule method is applied with including the effects of 1/m_Q order corrections. We then extract |V_{ub}| from B -> rho l nu decay up to order of 1/m_Q corrections.
We calculate, in the continuum limit of quenched lattice QCD, the form factor that enters in the decay rate of the semileptonic decay B --> D l nu. Making use of the step scaling method (SSM), previously introduced to handle two scale problems in lat
We report on a measurement of the branching fractions for B- --> D(*)+ pi- l- nu-bar and B0bar --> D(*)0 pi+ l- nu-bar with 275 million BBbar events collected at the Upsilon(4S) resonance with the Belle detector at KEKB. Events are tagged by fully re