ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of very small neutrino masses in double-beta decay using laser tagging

130   0   0.0 ( 0 )
 نشر من قبل Giorgio Gratta
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe an approach to the study of neutrino masses that combines quantum optics techniques with radiation detectors to obtain unprecedented sensitivity. With it the search for Majorana neutrino masses down to $sim$10 meV will become accessible. The experimental technique uses the possibility of individually detecting $rm Ba^+$-ions in the final state of $rm ^{136}Xe$ double-beta decay via resonant excitation with a set of lasers aimed at a specific location in a large Time Projection Chamber. The specificity of the atomic levels provides tagging and, together with more traditional event recognition parameters, greatly suppresses radioactive backgrounds.



قيم البحث

اقرأ أيضاً

Study of the neutrinoless double beta decay and searches for the manifestation of the neutrino mass in ordinary beta decay are the main sources of information about the absolute neutrino mass scale, and the only practical source of information about the charge conjugation properties of the neutrinos. Thus, these studies have a unique role in the plans for better understanding of the whole fast expanding field of neutrino physics.
Neutrinoless double beta decay, which is a very old and yet elusive process, is reviewed. Its observation will signal that lepton number is not conserved and the neutrinos are Majorana particles. More importantly it is our best hope for determining t he absolute neutrino mass scale at the level of a few tens of meV. To achieve the last goal certain hurdles have to be overcome involving particle, nuclear and experimental physics. Nuclear physics is important for extracting the useful information from the data. One must accurately evaluate the relevant nuclear matrix elements, a formidable task. To this end, we review the sophisticated nuclear structure approaches recently been developed, which give confidence that the needed nuclear matrix elements can be reliably calculated. From an experimental point of view it is challenging, since the life times are long and one has to fight against formidable backgrounds. If a signal is found, it will be a tremendous accomplishment. Then, of course, the real task is going to be the extraction of the neutrino mass from the observations. This is not trivial, since current particle models predict the presence of many mechanisms other than the neutrino mass, which may contribute or even dominate this process. We will, in particular, consider the following processes: (i)The neutrino induced, but neutrino mass independent contribution. (ii)Heavy left and/or right handed neutrino mass contributions. (iii)Intermediate scalars (doubly charged etc). (iv)Supersymmetric (SUSY) contributions. We will show that it is possible to disentangle the various mechanisms and unambiguously extract the important neutrino mass scale, if all the signatures of the reaction are searched in a sufficient number of nuclear isotopes.
A discovery that neutrinos are not the usual Dirac but Majorana fermions, i.e. identical to their antiparticles, would be a manifestation of new physics with profound implications for particle physics and cosmology. Majorana neutrinos would generate neutrinoless double-$beta$ ($0 ubetabeta$) decay, a matter-creating process without the balancing emission of antimatter. So far, 0$ ubetabeta$ decay has eluded detection. The GERDA collaboration searches for the $0 ubetabeta$ decay of $^{76}$Ge by operating bare germanium detectors in an active liquid argon shield. With a total exposure of 82.4 kg$cdot$yr, we observe no signal and derive a lower half-life limit of T$_{1/2}$ > 0.9$cdot$10$^{26}$ yr (90% C.L.). Our T$_{1/2}$ sensitivity assuming no signal is 1.1$cdot$10$^{26}$ yr. Combining the latter with those from other $0{ u}betabeta$ decay searches yields a sensitivity to the effective Majorana neutrino mass of 0.07 - 0.16 eV, with corresponding sensitivities to the absolute mass scale in $beta$ decay of 0.15 - 0.44 eV, and to the cosmological relevant sum of neutrino masses of 0.46 - 1.3 eV.
We developed a CANDLES-III system to study the neutrino-less double beta (0$ ubetabeta$) decay of $^{48}$Ca. The proposed system employs 96 CaF$_{2}$ scintillation crystals (305 kg) with natural Ca ($^{rm nat.}$Ca) isotope which corresponds 350,g of $^{48}$Ca. External backgrounds were rejected using a 4$pi$ active shield of a liquid scintillator surrounding the CaF$_2$ crystals. The internal backgrounds caused by the radioactive impurities within the CaF$_2$ crystals can be reduced effectively through analysis of the signal pulse shape. We analyzed the data obtained in the Kamioka underground for a live-time of 130.4,days to evaluate the feasibility of the low background measurement with the CANDLES-III detector. Using Monte Carlo simulations, we estimated the background rate from the radioactive impurities in the CaF$_{2}$ crystals and the rate of high energy $gamma$-rays caused by the (n, $gamma$) reactions induced by environmental neutrons. The expected background rate was in a good agreement with the measured rate, i.e., approximately 10$^{-3}$ events/keV/yr/(kg of $^{rm nat.}$Ca), in the 0$ ubetabeta$ window. In conclusion, the background candidates were estimated properly by comparing the measured energy spectrum with the background simulations. With this measurement method, we performed the first search for 0$ ubetabeta$ decay in a low background condition using a detector with a Ca isotope, in which the Ca present was not enriched, in a scale of hundreds of kg. The $^{48}$Ca isotope has a high potential for use in 0$ ubetabeta$ decay search, and is expected to be useful for the development of a next-generation detector for highly sensitive measurements.
We investigate neutrinoless double beta decay ($0 ubetabeta$) in the presence of sterile neutrinos with Majorana mass terms. These gauge-singlet fields are allowed to interact with Standard-Model (SM) fields via renormalizable Yukawa couplings as wel l as higher-dimensional gauge-invariant operators up to dimension seven in the Standard Model Effective Field Theory extended with sterile neutrinos. At the GeV scale, we use Chiral effective field theory involving sterile neutrinos to connect the operators at the level of quarks and gluons to hadronic interactions involving pions and nucleons. This allows us to derive an expression for $0 ubetabeta$ rates for various isotopes in terms of phase-space factors, hadronic low-energy constants, nuclear matrix elements, the neutrino masses, and the Wilson coefficients of higher-dimensional operators. The needed hadronic low-energy constants and nuclear matrix elements depend on the neutrino masses, for which we obtain interpolation formulae grounded in QCD and chiral perturbation theory that improve existing formulae that are only valid in a small regime of neutrino masses. The resulting framework can be used directly to assess the impact of $0 ubetabeta$ experiments on scenarios with light sterile neutrinos and should prove useful in global analyses of sterile-neutrino searches. We perform several phenomenological studies of $0 ubetabeta$ in the presence of sterile neutrinos with and without higher-dimensional operators. We find that non-standard interactions involving sterile neutrinos have a dramatic impact on $0 ubetabeta$ phenomenology, and next-generation experiments can probe such interactions up to scales of $mathcal O(100)$ TeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا