ﻻ يوجد ملخص باللغة العربية
It is extraordinarely difficult to detect the extremely weak gravitomagnetic (GM) field of even as large a body as the earth. To detect the GM field, the gravitational analog of an ordinary magnetic field, in a modest terrestrial laboratory should be that much more difficult. Here we show, however, that for certain superconductor configuration and topologies, it should be possible to detect a measurable GM field in the terrestrial laboratory, by using the properties of superconductors imposed by quantum mechanical requirements. In particular, we show that the GM Flux should be quantized in a superconductor with non-vanishing genus, just like the ordinary magnetic flux. And this magnetically induced, quantized GM Flux, for sufficiently high quantum number and favorable geometries, should be distinguishable from the effects produced by an ordinary magnetic field.
The difference in the proper azimuthal periods of revolution of two standard clocks in direct and retrograde orbits about a central rotating mass is proportional to J/Mc^2, where J and M are, respectively, the proper angular momentum and mass of the
The main theoretical aspects of gravitomagnetism are reviewed. It is shown that the gravitomagnetic precession of a gyroscope is intimately connected with the special temporal structure around a rotating mass that is revealed by the gravitomagnetic c
We study the gravitomagnetism in the Scalar-Vector-Tensor theory or Moffats Modified theory of Gravity(MOG). We compute the gravitomagnetic field that a slow-moving mass distribution produces in its Newtonian regime. We report that the consistency be
A new experiment aimed to the detection of the gravito-magnetic Lense-Thirring effect at the surface of the Earth will be presented; the name of the experiment is GINGER. The proposed technique is based on the behavior of light beams in ring lasers,
A self-consistent general relativistic configuration describing a finite cross-section magnetic flux tube is constructed. The cosmic solenoid is modeled by an elastic superconductive surface which separates the Melvin core from the surrounding flat c