ﻻ يوجد ملخص باللغة العربية
We obtain the Einstein-Maxwell equations for (2+1)-dimensional static space-time, which are invariant under the transformation $q_0=i,q_2,q_2=i,q_0,alpha rightleftharpoons gamma$. It is shown that the magnetic solution obtained with the help of the procedure used in Ref.~cite{Cataldo}, can be obtained from the static BTZ solution using an appropriate transformation. Superpositions of a perfect fluid and an electric or a magnetic field are separately studied and their corresponding solutions found.
We present a general solution of the coupled Einstein-Maxwell field equations (without the source charges and currents) in three spacetime dimensions. We also admit any value of the cosmological constant. The whole family of such $Lambda$-electrovacu
Following the technique of Muller-zum-Hagen, refs [1,2], we show that strictly static and strictly stationary solutions of the Einstein-Maxwell equations are analytic in harmonic coordinates. This holds whether or not the Maxwell field inherits the symmetry.
The Einstein-Maxwell (E-M) equations in a curved spacetime that admits at least one Killing vector are derived, from a Lagrangian density adapted to symmetries. In this context, an auxiliary space of potentials is introduced, in which, the set of pot
We prove that any asymptotically flat static spacetime in higher dimensional Einstein-Maxwell theory must have no magnetic field. This implies that there are no static soliton spacetimes and completes the classification of static non-extremal black h
We present several new exact solutions in five and higher dimensional Einstein-Maxwell theory by embedding the Nutku instanton. The metric functions for the five-dimensional solutions depend only on a radial coordinate and on two spatial coordinates