ترغب بنشر مسار تعليمي؟ اضغط هنا

The Cosmic No-Hair Theorem and the Nonlinear Stability of Homogeneous Newtonian Cosmological Models

63   0   0.0 ( 0 )
 نشر من قبل Alan Rendall
 تاريخ النشر 1994
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The validity of the cosmic no-hair theorem is investigated in the context of Newtonian cosmology with a perfect fluid matter model and a positive cosmological constant. It is shown that if the initial data for an expanding cosmological model of this type is subjected to a small perturbation then the corresponding solution exists globally in the future and the perturbation decays in a way which can be described precisely. It is emphasized that no linearization of the equations or special symmetry assumptions are needed. The result can also be interpreted as a proof of the nonlinear stability of the homogeneous models. In order to prove the theorem we write the general solution as the sum of a homogeneous background and a perturbation. As a by-product of the analysis it is found that there is an invariant sense in which an inhomogeneous model can be regarded as a perturbation of a unique homogeneous model. A method is given for associating uniquely to each Newtonian cosmological model with compact spatial sections a spatially homogeneous model which incorporates its large-scale dynamics. This procedure appears very natural in the Newton-Cartan theory which we take as the starting point for Newtonian cosmology.

قيم البحث

اقرأ أيضاً

We analyze gravitational-wave data from the first LIGO detection of a binary black-hole merger (GW150914) in search of the ringdown of the remnant black hole. Using observations beginning at the peak of the signal, we find evidence of the fundamental quasinormal mode and at least one overtone, both associated with the dominant angular mode ($ell=m=2$), with $3.6sigma$ confidence. A ringdown model including overtones allows us to measure the final mass and spin magnitude of the remnant exclusively from postinspiral data, obtaining an estimate in agreement with the values inferred from the full signal. The mass and spin values we measure from the ringdown agree with those obtained using solely the fundamental mode at a later time, but have smaller uncertainties. Agreement between the postinspiral measurements of mass and spin and those using the full waveform supports the hypothesis that the GW150914 merger produced a Kerr black hole, as predicted by general relativity, and provides a test of the no-hair theorem at the ${sim}10%$ level. An independent measurement of the frequency of the first overtone yields agreement with the no-hair hypothesis at the ${sim 20}%$ level. As the detector sensitivity improves and the detected population of black hole mergers grows, we can expect that using overtones will provide even stronger tests.
Bopp-Podolsky electrodynamics is generalized to curved space-times. The equations of motion are written for the case of static spherically symmetric black holes and their exterior solutions are analyzed using Bekensteins method. It is shown the solut ions split-up into two parts, namely a non-homogeneous (asymptotically massless) regime and a homogeneous (asymptotically massive) sector which is null outside the event horizon. In addition, in the simplest approach to Bopp-Podolsky black holes, the non-homogeneous solutions are found to be Maxwells solutions leading to a Reissner-Nordstrom black hole. It is also demonstrated that the only exterior solution consistent with the weak and null energy conditions is the Maxwells one. Thus, in light of energy conditions, it is concluded that only Maxwell modes propagate outside the horizon and, therefore, the no-hair theorem is satisfied in the case of Bopp-Podolsky fields in spherically symmetric space-times.
151 - Eric Thrane , Paul Lasky , 2017
General relativitys no-hair theorem states that isolated astrophysical black holes are described by only two numbers: mass and spin. As a consequence, there are strict relationships between the frequency and damping time of the different modes of a p erturbed Kerr black hole. Testing the no-hair theorem has been a longstanding goal of gravitational-wave astronomy. The recent detection of gravitational waves from black hole mergers would seem to make such tests imminent. We investigate how constraints on black hole ringdown parameters scale with the loudness of the ringdown signal---subject to the constraint that the post-merger remnant must be allowed to settle into a perturbative, Kerr-like state. In particular, we require that---for a given detector---the gravitational waveform predicted by numerical relativity is indistinguishable from an exponentially damped sine after time $t^text{cut}$. By requiring the post-merger remnant to settle into such a perturbative state, we find that confidence intervals for ringdown parameters do not necessarily shrink with louder signals. In at least some cases, more sensitive measurements probe later times without necessarily providing tighter constraints on ringdown frequencies and damping times. Preliminary investigations are unable to explain this result in terms of a numerical relativity artifact.
Thanks to the release of the extraordinary EHT image of shadow attributed to the M87* supermassive black hole (SMBH), we have a novel window to assess the validity of fundamental physics in the strong-field regime. Motivated by this, we consider Joha nnsen & Psaltis metric parameterized by mass, spin, and an additional dimensionless hair parameter $epsilon$. This parametric framework in the high rotation regimes provides a well-behaved bed to the strong-gravity test of the no-hair theorem (NHT) using the EHT data. Incorporating the $epsilon$ into the standard Kerr spacetime enrich it in the sense that, depending on setting the positive and negative values for that, we deal with alternative compact objects: deformed Kerr naked singularity and Kerr BH solutions, respectively. Shadows associated with these two possible solutions indicate that the deformation parameter $epsilon$ affects the geometry shape of standard shadow such that it becomes more oblate and prolate with $epsilon<0$ and $epsilon>0$, respectively. By scanning the window associated with three shadow observables oblateness, deviation from circularity, and shadow diameter, we perform a numerical analysis within the range $a_*=0.9mp0.1$ of the dimensionless rotation parameter, to find the constraints on the hair parameter $epsilon$ in both possible solutions. For both possible signs of $epsilon$, we extract a variety of upper bounds that are in interplay with $a_*$. Although by approaching the rotation parameters to the extreme limit, the allowable range of both hair parameters becomes narrower, the hairy Kerr BH solution is a more promising candidate to play the role of the alternative compact object instead of the standard Kerr BH. The lack of tension between hairy Kerr BH with the current observation of the EHT shadow of the M87* SMBH carries this message that there is the possibility of NHT violation.
The no-hair theorem states that astrophysical black holes are fully characterised by just two numbers: their mass and spin. The gravitational-wave emission from a perturbed black-hole consists of a superposition of damped sinusoids, known as textit{q uasi-normal modes}. Quasi-normal modes are specified by three integers $(ell,m,n)$: the $(ell, m)$ integers describe the angular properties and $(n)$ specifies the (over)tone. If the no-hair theorem holds, the frequencies and damping times of quasi-normal modes are determined uniquely by the mass and spin of the black hole, while phases and amplitudes depend on the particular perturbation. Current tests of the no-hair theorem, attempt to identify these modes in a semi-agnostic way, without imposing priors on the source of the perturbation. This is usually known as textit{black-hole spectroscopy}. Applying this framework to GW150914, the measurement of the first overtone led to the confirmation of the theorem to $20%$ level. We show, however, that such semi-agnostic tests cannot provide strong evidence in favour of the no-hair theorem, even for extremely loud signals, given the increasing number of overtones (and free parameters) needed to fit the data. This can be solved by imposing prior assumptions on the origin of the perturbed black hole that can further constrain the explored parameters: in particular, our knowledge that the ringdown is sourced by a binary black hole merger. Applying this strategy to GW150914 we find a natural log Bayes factor of $sim 6.5$ in favour of the Kerr nature of its remnant, indicating that the hairy object hypothesis is disfavoured with $<1:600$ with respect to the Kerr black-hole one.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا