ﻻ يوجد ملخص باللغة العربية
The Mock Data Challenges (MLDCs) have the dual purpose of fostering the development of LISA data-analysis tools and capabilities and of demonstrating the technical readiness already achieved by the gravitational-wave community in distilling a rich science payoff from the LISA data. The first round of MLDCs has just been completed and the second-round data sets are being released shortly after this workshop. The second-round data sets contain radiation from an entire Galactic population of stellar-mass binary systems, from massive--black-hole binaries, and from extreme--mass-ratio inspirals. These data sets are designed to capture much of the complexity that is expected in the actual LISA data, and should provide a fairly realistic setting to test advanced data-analysis techniques, and in particular the global aspect of the analysis. Here we describe the second round of MLDCs and provide details about its implementation.
The LISA International Science Team Working Group on Data Analysis (LIST-WG1B) is sponsoring several rounds of mock data challenges, with the purposeof fostering the development of LISA data analysis capabilities, and of demonstrating technical readi
The Mock LISA Data Challenges (MLDCs) have the dual purpose of fostering the development of LISA data analysis tools and capabilities, and demonstrating the technical readiness already achieved by the gravitational-wave community in distilling a rich
We report on the performance of an end-to-end Bayesian analysis pipeline for detecting and characterizing galactic binary signals in simulated LISA data. Our principal analysis tool is the Blocked-Annealed Metropolis Hasting (BAM) algorithm, which ha
We report on the analysis of selected single source data sets from the first round of the Mock LISA Data Challenges (MLDC) for white dwarf binaries. We implemented an end-to-end pipeline consisting of a grid-based coherent pre-processing unit for sig
The Mock LISA Data Challenges are a program to demonstrate LISA data-analysis capabilities and to encourage their development. Each round of challenges consists of several data sets containing simulated instrument noise and gravitational-wave sources