ﻻ يوجد ملخص باللغة العربية
We consider the thermodynamics of a charged black hole enclosed in a cavity. The charge in the cavity and the temperature at the walls are fixed so that we have a canonical ensemble. We derive the phase structure and stability of black hole equilibrium states. We compare our results to that of other work which uses asymptotically anti-de Sitter boundary conditions to define the thermodynamics. The thermodynamic properties have extensive similarities which suggest that the idea of AdS holography is more dependent on the existence of the boundary than on the exact details of asymptotically AdS metrics.
In this article, we study the circular motion of particles and the well-known Penrose mechanism around a Kerr-Newman-Kasuya black hole spacetime. The inner and outer horizons, as well as ergosurfaces of the said black hole, are briefly examined under
We study massive charged fermionic perturbations in the background of a charged two-dimensional dilatonic black hole, and we solve the Dirac equation analytically. Then, we compute the reflection and transmission coefficients and the absorption cross
The quasinormal modes (QNMs) of a regular black hole with charge are calculated in the eikonal approximation. In the eikonal limit the QNMs of black hole are determined by the parameters of the unstable circular null geodesics. The behaviors of QNMs
It is reported that massive scalar fields can form bound states around Kerr black holes [C. Herdeiro, and E. Radu, Phys. Rev. Lett. 112, 221101 (2014)]. These bound states are called scalar clouds, which have a real frequency $omega=mOmega_H$, where
Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galile