ﻻ يوجد ملخص باللغة العربية
In this work we study static perfect fluid stars in 2+1 dimensions with an exterior BTZ spacetime. We found the general expression for the metric coefficients as a function of the density and pressure of the fluid. We found the conditions to have regularity at the origin throughout the analysis of a set of linearly independent invariants. We also obtain an exact solution of the Einstein equations, with the corresponding equation of state $p=p(rho)$, which is regular at the origin.
The asymptotic properties of self-similar spherically symmetric perfect fluid solutions with equation of state p=alpha mu (-1<alpha<1) are described. We prove that for large and small values of the similarity variable, z=r/t, all such solutions must
We investigate the interior Einsteins equations in the case of a static, axially symmetric, perfect fluid source. We present a particular line element that is specially suitable for the investigation of this type of interior gravitational fields. Ass
The Alcubierre metric describes a spacetime geometry that allows a massive particle inside a spacetime distortion, called warp bubble, to travel with superluminal global velocities. In this work we advance solutions of the Einstein equations with the
We investigate spherically symmetric cosmological models in Einstein-aether theory with a tilted (non-comoving) perfect fluid source. We use a 1+3 frame formalism and adopt the comoving aether gauge to derive the evolution equations, which form a wel
Static spherically symmetric perfect fluid solutions are studied in metric $f(R)$ theories of gravity. We show that pressure and density do not uniquely determine $f(R)$ ie. given a matter distribution and an equation state, one cannot determine the