ﻻ يوجد ملخص باللغة العربية
Recent claims point out that possible violations of Lorentz symmetry appearing in some semiclassical models of extended matter dynamics motivated by loop quantum gravity can be removed by a different choice of canonically conjugated variables. In this note we show that such alternative is inconsistent with the choice of variables in the underlying quantum theory together with the semiclassical approximation, as long as the correspondence principle is maintained. A consistent choice will violate standard Lorentz invariance. Thus, to preserve a relativity principle in this framework, the linear realization of Lorentz symmetry should be extended or superseded.
A simple model is constructed which allows to compute modified dispersion relations with effects from loop quantum gravity. Different quantization choices can be realized and their effects on the order of corrections studied explicitly. A comparison
We explicitly construct and characterize all possible independent loop states in 3+1 dimensional loop quantum gravity by regulating it on a 3-d regular lattice in the Hamiltonian formalism. These loop states, characterized by the (dual) angular momen
Short-range experiments testing the gravitational inverse-square law at the submillimeter scale offer uniquely sensitive probes of Lorentz invariance. A combined analysis of results from the short-range gravity experiments HUST-2015, HUST-2011, IU-20
The canonical ``loop formulation of quantum gravity is a mathematically well defined, background independent, non perturbative standard quantization of Einsteins theory of General Relativity. Some among the most meaningful results of the theory are:
We discuss constraint structure of extended theories of gravitation (also known as f(R) theories) in the vacuum selfdual formulation introduced in ref. [1].