ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards a Realistic Neutron Star Binary Inspiral

127   0   0.0 ( 0 )
 نشر من قبل Mark A. Miller
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An approach to general relativity based on conformal flatness and quasiequilibrium (CFQE) assumptions has played an important role in the study of the inspiral dynamics and in providing initial data for fully general relativistic numerical simulations of coalescing compact binaries. However, the regime of validity of the approach has never been established. To this end, we develop an analysis that determines the violation of the CFQE approximation in the evolution of the binary described by the full Einstein theory. With this analysis, we show that the CFQE assumption is significantly violated even at relatively large orbital separations in the case of corotational neutron star binaries. We also demonstrate that the innermost stable circular orbit (ISCO) determined in the CFQE approach for corotating neutron star binaries may have no astrophysical significance.

قيم البحث

اقرأ أيضاً

137 - Mark Miller , Philip Gressman , 2003
This paper reports on our effort in modeling realistic astrophysical neutron star binaries in general relativity. We analyze under what conditions the conformally flat quasiequilibrium (CFQE) approach can generate ``astrophysically relevant initial d ata, by developing an analysis that determines the violation of the CFQE approximation in the evolution of the binary described by the full Einstein theory. We show that the CFQE assumptions significantly violate the Einstein field equations for corotating neutron stars at orbital separations nearly double that of the innermost stable circular orbit (ISCO) separation, thus calling into question the astrophysical relevance of the ISCO determined in the CFQE approach. With the need to start numerical simulations at large orbital separation in mind, we push for stable and long term integrations of the full Einstein equations for the binary neutron star system. We demonstrate the stability of our numerical treatment and analyze the stringent requirements on resolution and size of the computational domain for an accurate simulation of the system.
63 - Mark Miller 2005
We investigate the dynamic stability of inspiraling neutron stars by performing multiple-orbit numerical relativity simulations of the binary neutron star inspiral process. By introducing eccentricities in the orbits of the neutron stars, significant changes in orbital separation are obtained within orbital timescales. We find that as the binary system evolves from apastron to periastron (as the binary separation decreases), the central rest mass density of each star decreases, thus stabilizing the stars against individual prompt collapse. As the binary system evolves from periastron to apastron, the central rest mass density increases; the neutron stars re-compress as the binary separation increases.
We show how gravitational-wave observations with advanced detectors of tens to several tens of neutron-star binaries can measure the neutron-star radius with an accuracy of several to a few percent, for mass and spatial distributions that are realist ic, and with none of the sources located within 100 Mpc. We achieve such an accuracy by combining measurements of the total mass from the inspiral phase with those of the compactness from the postmerger oscillation frequencies. For estimating the measurement errors of these frequencies we utilize analytical fits to postmerger numerical-relativity waveforms in the time domain, obtained here for the first time, for four nuclear-physics equations of state and a couple of values for the mass. We further exploit quasi-universal relations to derive errors in compactness from those frequencies. Measuring the average radius to well within 10% is possible for a sample of 100 binaries distributed uniformly in volume between 100 and 300 Mpc, so long as the equation of state is not too soft or the binaries are not too heavy.
We select 37 most common and realistic dense matter equation of states to integrate the general relativistic stellar structure equations for static spherically symmetric matter configurations. For all these models, we check the compliance of the acce ptability conditions that every stellar model should satisfy. It was found that some of the non-relativistic equation of states violate the causality and/or the dominant energy condition and that adiabatic instabilities appear in the inner crust for all equation of state considered.
Gravitational waves emitted during the inspiral, plunge and merger of a black hole binary carry linear momentum. This results in an astrophysically important recoil to the final merged black hole, a ``kick that can eject it from the nucleus of a gala xy. In a previous paper we showed that the puzzling partial cancellation of an early kick by a late antikick, and the dependence of the cancellation on black hole spin, can be understood from the phenomenology of the linear momentum waveforms. Here we connect that phenomenology to its underlying cause, the spin-dependence of the inspiral trajectories. This insight suggests that the details of plunge can be understood more broadly with a focus on inspiral trajectories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا