ﻻ يوجد ملخص باللغة العربية
The field equations of Mannheims theory of conformal gravity with dynamic mass generation are solved numerically in the interior and exterior regions of a model spherically symmetric sun with matched boundary conditions at the surface. The model consists of a generic fermion field inside the sun, and a scalar Higgs field in both the interior and exterior regions. From the conformal geodesic equations it is shown how an asymptotic gradient in the Higgs field causes an anomalous radial acceleration in qualitative agreement with that observed on the Pioneer 10/11, Galileo, and Ulysses spacecraft. At the same time the standard solar system tests of general relativity are preserved within the limits of observation.
We study here, using the Mannheim-Kazanas solution of Weyl conformal theory, the mass decomposition in the representative subsample of $57$ early-type elliptical lens galaxies of the SLACS on board the HST. We begin by showing that the solution need
In this work, a correspondence between black hole solutions of conformal and massive theories of gravity is found. It is seen that this correspondence imposes some constraints on parameters of these theories. What is more, a relation between the mass
The recent discovery of dark energy has challenged Einsteins general theory of relativity as a complete model for our macroscopic universe. From a theoretical view, the challenge is even stronger: general relativity clearly does not extend to the ver
We discuss the interior solutions of fluid Sphere in f(R,T) gravity admitting conformal killing vectors, where R is Ricci scalar and T is trace of energy momentum tensor. The solutions corresponding to isotropic and anisotropic configurations have be
We investigate equations of motion and future singularities of $f(R,T)$ gravity where $R$ is the Ricci scalar and $T$ is the trace of stress-energy tensor. Future singularities for two kinds of equation of state (barotropic perfect fluid and generali