ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlation between Gamma-Ray bursts and Gravitational Waves

98   0   0.0 ( 0 )
 نشر من قبل P. Tricarico
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The cosmological origin of $gamma$-ray bursts (GRBs) is now commonly accepted and, according to several models for the central engine, GRB sources should also emit at the same time gravitational waves bursts (GWBs). We have performed two correlation searches between the data of the resonant gravitational wave detector AURIGA and GRB arrival times collected in the BATSE 4B catalog. No correlation was found and an upper limit bbox{$h_{text{RMS}} leq 1.5 times 10^{-18}$} on the averaged amplitude of gravitational waves associated with $gamma$-ray bursts has been set for the first time.



قيم البحث

اقرأ أيضاً

In the era of second generation ground-based gravitational wave detectors, short gamma-ray bursts (GRBs) will be among the most promising astrophysical events for joint electromagnetic and gravitational wave observation. A targeted search for gravita tional wave compact binary merger signals in coincidence with short GRBs was developed and used to analyze data from the first generation LIGO and Virgo instruments. In this paper, we present improvements to this search that enhance our ability to detect gravitational wave counterparts to short GRBs. Specifically, we introduce an improved method for estimating the gravitational wave background to obtain the event significance required to make detections; implement a method of tiling extended sky regions, as required when searching for signals associated to poorly localized GRBs from Fermi Gamma-ray Burst Monitor or the InterPlanetary Network; and incorporate astrophysical knowledge about the beaming of GRB emission to restrict the search parameter space. We describe the implementation of these enhancements and demonstrate how they improve the ability to observe binary merger gravitational wave signals associated with short GRBs.
In this letter we suggest a scenario for simultaneous emission of gravitational-wave and $gamma$-ray bursts (GRBs) from soft gamma-ray repeaters (SGRs). we argue that both of the radiations can be generated by a super-Eddington accreting neutron star s in X-ray binaries. In this model a supercritical accretion transient takes back onto the remnant star the disk leftover by the hydrodynamic instability phase of a low magnetized, rapidly rotating neutron star in a X-ray binary system. We estimate the rise timescale $Delta t_c = 0.21 ms$, minimum mass accretion rate needed to trigger the $gamma$-ray emission, $dot{M}_lambda = 4.5 times 10^{28} g$, and its effective associated temperature $T_{eff} = 740 keV$, and the timescale for repeating a burst of $gamma$-rays $Delta tau_R = 11.3 yr$. Altogether, we find the associated GW amplitude and frequency to be $h_c = 2.7 times 10^{-23}/{(Hz)}^{1/2}$ and $f_{gw} = 966 Hz$, for a source distance $sim 55 kpc$. Detectability of the pulses by t he forthcoming GW anntenas is discussed and found likely.
In this paper, we study the luminosity function and formation rate of short gamma-ray bursts (sGRBs). Firstly, we derive the $E_p-L_p$ correlation using 16 sGRBs with redshift measurements and determine the pseudo redshifts of 284 Fermi sGRBs. Then, we use the Lynden-Bell c$^-$ method to study the luminosity function and formation rate of sGRBs without any assumptions. A strong evolution of luminosity $L(z)propto (1+z)^{4.47}$ is found. After removing this evolution, the luminosity function is $ Psi (L) propto L_0 ^ {- 0.29 pm 0.01} $ for dim sGRBs and $ psi (L) propto L_0 ^ {- 1.07 pm 0.01} $ for bright sGRBs, with the break point $8.26 times 10^{50} $ erg s$^{-1}$. We also find that the formation rate decreases rapidly at $z<1.0$, which is different with previous works. The local formation rate of sGRBs is 7.53 events Gpc$^{-3}$ yr$^{-1}$. Considering the beaming effect, the local formation rate of sGRBs including off-axis sGRBs is $ 203.31^{+1152.09}_{-135.54} $ events Gpc$^{-3}$ yr$^{-1}$. We also estimate that the event rate of sGRBs detected by the advanced LIGO and Virgo is $0.85^{+4.82}_{-0.56} $ events yr$^{-1}$ for NS-NS binary.
Three-dimensional hydrodynamical simulations are presented for the direct head-on or off-center collision of two neutron stars, employing a basically Newtonian PPM code but including the emission of gravitational waves and their back-reaction on the hydrodynamical flow. A physical nuclear equation of state is used that allows us to follow the thermodynamical evolution of the stellar matter and to compute the emission of neutrinos. Predicted gravitational wave signals, luminosities and waveforms, are presented. The models are evaluated for their implications for gamma-ray burst scenarios. We find an extremely luminous outburst of neutrinos with a peak luminosity of more than 4E54 erg/s for several milliseconds. This leads to an efficiency of about 1% for the annihilation of neutrinos with antineutrinos, corresponding to an average energy deposition rate of more than 1E52 erg/s and a total energy of about 1E50 erg deposited in electron-positron pairs around the collision site within 10ms. Although these numbers seem very favorable for gamma-ray burst scenarios, the pollution of the $e^pm$ pair-plasma cloud with nearly 0.1$M_{odot}$ of dynamically ejected baryons is 5 orders of magnitude too large. Therefore the formation of a relativistically expanding fireball that leads to a gamma-ray burst powered by neutrino emission from colliding neutron stars is definitely ruled out.
In this paper we study the use of cross-correlations between multiple gravitational wave (GW) data streams for detecting long-lived periodic signals. Cross-correlation searches between data from multiple detectors have traditionally been used to sear ch for stochastic GW signals, but recently they have also been used in directed searches for periodic GWs. Here we further adapt the cross-correlation statistic for periodic GW searches by taking into account both the non-stationarity and the long term-phase coherence of the signal. We study the statistical properties and sensitivity of this search, its relation to existing periodic wave searches, and describe the precise way in which the cross-correlation statistic interpolates between semi-coherent and fully-coherent methods. Depending on the maximum duration over we wish to preserve phase coherence, the cross-correlation statistic can be tuned to go from a standard cross-correlation statistic using data from distinct detectors, to the semi-coherent time-frequency methods with increasing coherent time baselines, and all the way to a full coherent search. This leads to a unified framework for studying periodic wave searches and can be used to make informed trade-offs between computational cost, sensitivity, and robustness against signal uncertainties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا