ﻻ يوجد ملخص باللغة العربية
We give a classification of quadratic harmonic morphisms between Euclidean spaces (Theorem 2.4) after proving a Rank Lemma. We also find a correspondence between umbilical (Definition 2.7) quadratic harmonic morphisms and Clifford systems. In the case $ {Bbb R}^{4}longrightarrow {Bbb R}^{3} $, we determine all quadratic harmonic morphisms and show that, up to a constant factor, they are all bi-equivalent (Definition 3.2) to the well-known Hopf construction map and induce harmonic morphisms bi-equivalent to the Hopf fibration ${Bbb S}^{3} longrightarrow {Bbb S}^{2}$.
We construct large families of harmonic morphisms which are holomorphic with respect to Hermitian structures by finding heierarchies of Weierstrass-type representations. This enables us to find new examples of complex-valued harmonic morphisms from Euclidean spaces and spheres.
We obtain conditions on the Lee form under which a holomorphic map between almost Hermitian manifolds is a harmonic map or morphism. Then we discuss under what conditions (i) the image of a holomorphic map from a cosymplectic manifold is also cosympl
P. Baird and the second author studied harmonic morphisms from a three-dimensional simply-connected space form to a surface and obtained a complete local and global classification of them. In this paper, we obtain a description of all harmonic morphi
Equivalences between conformal foliations on Euclidean $3$-space, Hermitian structures on Euclidean $4$-space, shear-free ray congruences on Minkowski $4$-space, and holomorphic foliations on complex $4$-space are explained geometrically and twistori
The second named author and David Kalaj introduced a pseudometric on any domain in the real Euclidean space $mathbb R^n$, $nge 3$, defined in terms of conformal harmonic discs, by analogy with Kobayashis pseudometric on complex manifolds, which is de