ﻻ يوجد ملخص باللغة العربية
We show that the BIMATRIX game does not have a fully polynomial-time approximation scheme, unless PPAD is in P. In other words, no algorithm with time polynomial in n and 1/epsilon can compute an epsilon-approximate Nash equilibrium of an n by nbimatrix game, unless PPAD is in P. Instrumental to our proof, we introduce a new discrete fixed-point problem on a high-dimensional cube with a constant side-length, such as on an n-dimensional cube with side-length 7, and show that they are PPAD-complete. Furthermore, we prove, unless PPAD is in RP, that the smoothed complexity of the Lemke-Howson algorithm or any algorithm for computing a Nash equilibrium of a bimatrix game is polynomial in n and 1/sigma under perturbations with magnitude sigma. Our result answers a major open question in the smoothed analysis of algorithms and the approximation of Nash equilibria.
We prove that computing a Nash equilibrium of a two-player ($n times n$) game with payoffs in $[-1,1]$ is PPAD-hard (under randomized reductions) even in the smoothed analysis setting, smoothing with noise of constant magnitude. This gives a strong n
The use of monotonicity and Tarskis theorem in existence proofs of equilibria is very widespread in economics, while Tarskis theorem is also often used for similar purposes in the context of verification. However, there has been relatively little in
Model-free learning for multi-agent stochastic games is an active area of research. Existing reinforcement learning algorithms, however, are often restricted to zero-sum games, and are applicable only in small state-action spaces or other simplified
Given a binary dominance relation on a set of alternatives, a common thread in the social sciences is to identify subsets of alternatives that satisfy certain notions of stability. Examples can be found in areas as diverse as voting theory, game theo
Generative adversarial networks (GANs) represent a zero-sum game between two machine players, a generator and a discriminator, designed to learn the distribution of data. While GANs have achieved state-of-the-art performance in several benchmark lear