ﻻ يوجد ملخص باللغة العربية
In this paper we develop instanton method introduced in [1], [2], [3] to analyze quantitatively performance of Low-Density-Parity-Check (LDPC) codes decoded iteratively in the so-called error-floor regime. We discuss statistical properties of the numerical instanton-amoeba scheme focusing on detailed analysis and comparison of two regular LDPC codes: Tanners (155, 64, 20) and Margulis (672, 336, 16) codes. In the regime of moderate values of the signal-to-noise ratio we critically compare results of the instanton-amoeba evaluations against the standard Monte-Carlo calculations of the Frame-Error-Rate.
We analyze the performance of Low-Density-Parity-Check codes in the error-floor domain where the Signal-to-Noise-Ratio, s, is large, s >> 1. We describe how the instanton method of theoretical physics, recently adapted to coding theory, solves the pr
Consider transmission over a binary additive white gaussian noise channel using a fixed low-density parity check code. We consider the posterior measure over the code bits and the corresponding correlation between two codebits, averaged over the nois
We consider the effect of log-likelihood ratio saturation on belief propagation decoder low-density parity-check codes. Saturation is commonly done in practice and is known to have a significant effect on error floor performance. Our focus is on thre
An efficient decoding algorithm for horizontally u-interleaved LRPC codes is proposed and analyzed. Upper bounds on the decoding failure rate and the computational complexity of the algorithm are derived. It is shown that interleaving reduces the dec
We study the performance of low-density parity-check (LDPC) codes over finite integer rings, over two channels that arise from the Lee metric. The first channel is a discrete memory-less channel (DMC) matched to the Lee metric. The second channel add