ﻻ يوجد ملخص باللغة العربية
We study various SDP formulations for {sc Vertex Cover} by adding different constraints to the standard formulation. We show that {sc Vertex Cover} cannot be approximated better than $2-o(1)$ even when we add the so called pentagonal inequality constraints to the standard SDP formulation, en route answering an open question of Karakostas~cite{Karakostas}. We further show the surprising fact that by strengthening the SDP with the (intractable) requirement that the metric interpretation of the solution is an $ell_1$ metric, we get an exact relaxation (integrality gap is 1), and on the other hand if the solution is arbitrarily close to being $ell_1$ embeddable, the integrality gap may be as big as $2-o(1)$. Finally, inspired by the above findings, we use ideas from the integrality gap construction of Charikar cite{Char02} to provide a family of simple examples for negative type metrics that cannot be embedded into $ell_1$ with distortion better than $8/7-eps$. To this end we prove a new isoperimetric inequality for the hypercube.
We give a characterization result for the integrality gap of the natural linear programming relaxation for the vertex cover problem. We show that integrality gap of the standard linear programming relaxation for any graph G equals $left(2-frac{2}{chi
We study the generalized min sum set cover (GMSSC) problem, wherein given a collection of hyperedges $E$ with arbitrary covering requirements $k_e$, the goal is to find an ordering of the vertices to minimize the total cover time of the hyperedges; a
The Connected Vertex Cover problem, where the goal is to compute a minimum set of vertices in a given graph which forms a vertex cover and induces a connected subgraph, is a fundamental combinatorial problem and has received extensive attention in va
A famous conjecture of Tuza states that the minimum number of edges needed to cover all the triangles in a graph is at most twice the maximum number of edge-disjoint triangles. This conjecture was couched in a broader setting by Aharoni and Zerbib wh
The CONNECTED VERTEX COVER problem asks for a vertex cover in a graph that induces a connected subgraph. The problem is known to be fixed-parameter tractable (FPT), and is unlikely to have a polynomial sized kernel (under complexity theoretic assumpt