ﻻ يوجد ملخص باللغة العربية
Gaussian channels with memory and with noiseless feedback have been widely studied in the information theory literature. However, a coding scheme to achieve the feedback capacity is not available. In this paper, a coding scheme is proposed to achieve the feedback capacity for Gaussian channels. The coding scheme essentially implements the celebrated Kalman filter algorithm, and is equivalent to an estimation system over the same channel without feedback. It reveals that the achievable information rate of the feedback communication system can be alternatively given by the decay rate of the Cramer-Rao bound of the associated estimation system. Thus, combined with the control theoretic characterizations of feedback communication (proposed by Elia), this implies that the fundamental limitations in feedback communication, estimation, and control coincide. This leads to a unifying perspective that integrates information, estimation, and control. We also establish the optimality of the Kalman filtering in the sense of information transmission, a supplement to the optimality of Kalman filtering in the sense of information processing proposed by Mitter and Newton. In addition, the proposed coding scheme generalizes the Schalkwijk-Kailath codes and reduces the coding complexity and coding delay. The construction of the coding scheme amounts to solving a finite-dimensional optimization problem. A simplification to the optimal stationary input distribution developed by Yang, Kavcic, and Tatikonda is also obtained. The results are verified in a numerical example.
In this paper, we establish the connections of the fundamental limitations in feedback communication, estimation, and feedback control over Gaussian channels, from a unifying perspective for information, estimation, and control. The optimal feedback
The feedback sum-rate capacity is established for the symmetric $J$-user Gaussian multiple-access channel (GMAC). The main contribution is a converse bound that combines the dependence-balance argument of Hekstra and Willems (1989) with a variant of
In cite{butman1976} the linear coding scheme is applied, $X_t =g_tBig(Theta - {bf E}Big{ThetaBig|Y^{t-1}, V_0=v_0Big}Big)$, $t=2,ldots,n$, $X_1=g_1Theta$, with $Theta: Omega to {mathbb R}$, a Gaussian random variable, to derive a lower bound on the f
Secure communication with feedback is studied. An achievability scheme in which the backward channel is used to generate a shared secret key is proposed. The scenario of binary symmetric forward and backward channels is considered, and a combination
This paper considers the problem of secret communication over a multiple access channel with generalized feedback. Two trusted users send independent confidential messages to an intended receiver, in the presence of a passive eavesdropper. In this se